
Written Exam

DM510: Operating Systems (Spring 2025)

June 13, 2025

This exam consists of 7 pages in total, including this one, with 4 topics and
several questions in each topic. There are 60 points in total. The number of
points is given for each question. Along with your answers, also explain how
you arrived there, in a clear, but concise way.

Topic 1: Concurrency (12 points)

Recall that Amdahl’s law states that

speedup ≤ 1

S + 1−S
cores

where S be the ratio of sequential operations to all operations.
The program Fcast computes weather forecasts for a Danish news channel.

This computation currently takes 9 minutes on a single CPU core. Management
is unsatisfied with this and suggests to decrease the time to 3 minutes by using
3 cores instead of one. You estimate that 20% of the operations are sequential.

1.a) [3 points] Explain intuitively why the suggestion by management will
not suffice for their goal. Then using Amdahl’s law calculate the minimum
number of cores necessary to reduce the time to 3 minutes. What is the
maximum speedup that could be achieved by adding more cores?

Solution: The ideal speedup of 3× can only be achieved if the program is fully
parallelizable. Since there are sequential operations, which do not benefit from
parallelization, the speedup will be worse.

A speedup of at least 3 is necessary.

3 ≤ 1

0.2 + 0.8
cores

3(0.2 +
0.8

cores
) ≤ 1

0.8

cores
≤ 1/3− 0.2

1

0.8

1/3− 0.2
≤ cores

cores ≥ 6

Hence, at least 6 cores are necessary
For infinite number of cores, the speedup would approach 1/0.2 = 5. Since

this is the limit, an answer like 4.999 is also fine.
Last question could be interpreted as the maximum speedup (by Amdahl’s

law) from adding the mentioned 3 cores. So I also accept the solution

1

0.2 + 0.8
3

= 2.149 . . .

The following code implements a semaphore using the atomic instructions
compare and swap() and increment():

1 void wait(int *sem) {

2 while (true) {

3 int old = *sem;

4 if (old > 0) {

5 if (compare_and_swap(sem , old , old - 1))

6 break;

7 }

8 }

9 }

10

11 void signal(int *sem) {

12 increment(sem)

13 }

1.b) [2 points] For simplicity, your teammate suggests to replace lines 5-6
of the semaphore implementation by decrement(sem), which atomically
subtracts 1 from *sem. Would the solution still be correct?

Solution: No, for example: value of *sem is 1. Then thread T1 executes
wait() until line 4 (the if condition is evaluated as true). T1 is preempted and
T2 executes wait() completely. Afterwards, T1 continues. This results in a
negative value for *sem, which must not happen.

Also, the code would infinitely loop, which is not a race condition, but also
acceptable answer.

1.c) [2 points] Recall that mutex is equivalent to a semaphore that takes only
values 0 and 1. Your teammate notes that in an implementation of a mutex
the release() operation (corresponding to signal() here) does not need
to be made atomic and suggests to replace line 12 by *sem = *sem + 1.
Is the suggestion correct for general semaphores?

Solution: No: suppose thread T1 is preempted after computing *sem + 1 in a
register reg1. Then thread T2 increments *sem, but when T1 writes the contents
of reg1 to *sem the increment of T2 is lost.

2

1.d) [2 points] To reduce risk of race conditions, why don’t compilers auto-
matically translate all increments of variables (for example, i++) into the
atomic increment instructions?

Solution: Atomic instructions are slower and in most cases this would be un-
necessary. Optional details: the atomic instruction require locking the memory
bus, which may cost CPU cycles on this and other cores.

1.e) [3 points] As in Project 1, critical sections are sometimes implemented
by temporarily disabling interrupts. Explain this approach and state two
drawbacks of it.

Solution: Critical sections are code sections with the property that only one
process may be in a critical section at any given time . On single-core systems we
can disable interrupts when entering a critical section and enable them again
when leaving the critical section. This guarantees that the current process
cannot not be preempted until it leaves the critical section again. Since no
other process can become active after disabling interrupts, no other process can
enter a critical section simultaneously.

On multi-core systems several processes may run in parallel and remain
active even if one disables interrupts. Both may then enter critical sections
simultaneously, so disabling interrupts is not sufficient.

Disabling interrupts for a longer period of time can also cause problem with
responsiveness or system clocks that rely on regular interrupts.

3

Topic 2: Deadlocks (16 points)

The following figure shows states of systems where threads request or hold re-
sources. Threads are depicted as cycles and resources are depicted as rectangles,
with dots representing the instances of this resource. An arrow from a thread
to a resources describes that the thread requests this resource, an arrow from
a resource instance to a thread describes that the instance is currently held by
the thread.

T1 T2

T3

•

R1

• R2

State 1

T1 T2

T3

•
•

R1

• R2

State 2

2.a) [3 points] Which of the states above are deadlocked and why (or why
not)?

Solution: State 1 is deadlocked because of the cycle T1 −R2 − T3 −R1 − T1.
State 2 is not deadlocked because T1 can continue and ultimately release its

instance of R1. Then T3 can aquire R1 and continue, ultimately releasing R2.
Then T2 can aquire R2 and also continue.
Recall, the system call wait() suspends the calling process until a child process
that was previously created with fork() terminates. In the deadlock formalism
of resources and threads, we may think of each process Pi having a personal
resource Ri with one instance for each child process. A child process of Pi holds
one instance of Ri and releases the instance when it terminates. When Pi calls
wait() this corresponds to waiting for Ri.

2.b) [3 points] Unless another shared resource is involved, fork() and wait()
alone cannot lead to a deadlock. Explain this by showing that one of the
necessary conditions for deadlocks cannot be satisfied.

Solution: The circular wait condition cannot be satisfied. In the formalism
above a process can only wait for its own resource and hold its parent’s resource.
Since parent-child relation is a tree structure there cannot be a cycle.

4

2.c) [3 points] A single mutex without other shared resources involved can-
not result in a deadlock. Combined with fork() and wait(), however,
already a single mutex suffices to create a deadlock. Give an example in
pseudocode and explain it.

To avoid ambiguities, your example should not call fork() while holding
a mutex.

Solution:

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 lock(& mutex);

5 release (& mutex);

6 }

7 else {

8 /* parent */

9 lock(& mutex);

10 wait();

11 release (& mutex);

12 }

If the parent first aquires the mutex, the child waits for it infinitely while the
parent waits for the child to terminate.
Consider the following snapshot of a system:

Allocation Max
A B C A B C

T1 2 1 1 2 3 2
T2 0 0 1 3 0 1
T3 0 1 0 0 1 1
T4 1 3 2 2 3 3

Available = (0, 1, 1)

2.d) [4 points] Determine if the system is in a safe state using the subroutine
from Banker’s algorithm. If the state is safe, illustrate the order in which
the threads may complete. Otherwise, illustrate why the state is unsafe.

Solution: Initialization:

Need
A B C

T1 0 2 1
T2 3 0 0
T3 0 0 1
T4 1 0 1

Work = (0, 1, 1)

T3 can complete:

5

Need
A B C

T1 0 2 1
T2 3 0 0
T4 1 0 1

Work = (0, 2, 1)

T1 can complete:

Need
A B C

T2 3 0 0
T4 1 0 1

Work = (2, 3, 2)

T4 can complete:

Need
A B C

T2 3 0 0
Work = (3, 6, 4)

Finally, T2 can complete. This means the state is safe.

2.e) [3 points] Suppose that in the state above T1 requests (0, 0, 1). Deter-
mine with Banker’s algorithm whether this request can be granted.

Solution: After granting the resource, the state would change to

Allocation Max
A B C A B C

T1 2 1 2 2 3 2
T2 0 0 1 3 0 1
T3 0 1 0 0 1 1
T4 1 3 2 2 3 3

Available = (0, 1, 0)

We test if this is a safe state as before. Initialization:

Need
A B C

T1 0 2 0
T2 3 0 0
T3 0 0 1
T4 1 0 1

Work = (0, 1, 0)

Work is not large enough to guarantee that any of the threads can complete.
Thus the state is unsafe. Therefore, the request cannot be granted.

6

Topic 3: Main Memory (18 points)

We consider a CPU architecture with 16-bit addresses and a naive page table
implementation. The first 3 bits of the address specify the page or frame number.
The current page table of a process contains the following entries (in binary):

page frame
000 010
001 110
010 -
011 111
100 100
101 -
110 -
111 101

3.a) [2 points] How large is a page or frame in the architecture above?

Solution: A page/frame has size 216−3 = 8196.

3.b) [2 points] Based on the page table above, translate the following logical
addresses into physical addresses:

0110111010110000
0011010000010110
1111111110000000

Solution:

1110111010110000
1101010000010110
1011111110000000

3.c) [4 points] Describe the following terms in 2-3 sentences each: page fault,
least-recently-used replacement (LRU), inverted page table, translation
look-aside buffer

Solution: page fault: if a page is accessed, which is not in memory, a page
fault occurs. This page is then usually loaded from the backing store, which
causes a delay.

LRU: If a new page has to be brought to memory (e.g. because of a page
fault), but there is not enough space, then another page has to be removed.
LRU removes the page that has not been used for the longest time.

inverted page table: A page table implementation which maps physical
frames to logical pages (instead of the other way around). This means the size
of the table is exactly the number of physical frames, which may be much lower
than the number of pages. However, mapping pages to frames is no longer a
simple lookup.

7

translation look-aside buffer: A cache implemented in hardware that
stores some page-frame pairs. It reduces the number of page table lookups.
In the following example, process A wants to create a process B and pass a
large chunk of raw data as a parameter. Since it would not be feasible to pass
it as a command line argument, process A instead wants to write the data into
memory, which process B then should read.

The following shows an implementation using the fork() system call.

1 char* data;

2 ...

3 pid = fork();

4 if (pid == 0)

5 { /* process B */

6 consume(data);

7 ...

8 }

9 else

10 { /* process A */

11 free(data);

12 ...

13 }

3.d) [2 points] Describe in 2-3 sentences what the system call fork() does
using the example above.

Solution: fork() creates two copies of the current process, including two exact
copies of the address space. The only difference between the two processes is
the return value of fork(). Thus, process B can read the contents of data as
intended.

3.e) [2 points] Discuss race conditions: does the behavior of the program
depend on whether consume(data) executes before free(data)?

Solution: The order of execution does not matter, since all changes that process
A makes (including freeing data) only affect its own copy of the address space,
but not the one that process B is working with.
A pointer can be cast into an integer (describing the raw logical address). Below
is an attempt at an alternative solution for the previous problem. In this solution
we write two entirely separate programs for process A and B and process B is
not a child process of A. Instead, process A is started from the terminal and
prints out the address of data:

1 char* data;

2 ...

3 printf("%lld\n", (long long int)data);

4 ...

The output of this may for example be 106934719226528. Then concurrently to
process A, we start process B from another terminal and pass the previous num-
ber (106934719226528) as a command line argument. Process B then executes
the following code:

8

1 char* data;

2 int main(int argc , char** argv) {

3 /* atoll converts string to long long int */

4 data = (char*) atoll(argv [1]);

5 consume(data);

6 ...

7 }

3.f) [4 points] The approach above does not work as intended. Explain this
using logical and physical addresses and page tables.

Solution: The approach does not work as intended. Processes A and B have
seperate page tables. Here, we are passing a logical address from process A
to B, but this logical address is mapped to different physical addresses in both
processes. In fact, there is not any logical address for process B that would map
to the physical address that process A wants to share. (Optional: The code
above would most likely result in a segmentation fault.)

3.g) [2 points] Describe what shared memory is and (on a high level) how
this could be used to repair the example above.

Solution: Shared memory allows two processes to share frames, i.e., both pro-
cesses have logical addresses that map (in their page tables) to the same physical
frame. After setting up shared frames between process A and B, process A could
write to them and process B could read from them in a similar manner as at-
tempted in the previous example.

9

Topic 4: Storage and File Systems (14 points)

Consider a disk drive with cylinders numbered from 0 to 1999. The drive is
currently serving a request at cylinder 401 and the previous served request was
at cylinder 350. The queue of pending requests in order of arrival is: 30, 1910,
500, 37, 1400, 783.

4.a) [2 points] In which order would the SCAN and FCFS algorithms serve
the requests? What distance (in number of cylinders) would the disk arm
move in each algorithm?

Solution: SCAN: 500, 783, 1400, 1910, 37, 30 (distance: 1910−401+1910−30 =
3389).

FCFS: 30, 1910, 500, 37, 1400, 783 (distance: 401− 30+ 1910− 30+ 1910−
500 + 500− 37 + 1400− 37 + 1400− 783 = 6104).

4.b) [2 points] Explain why SCAN and C-SCAN are used with hard disk
drives (HDDs), but not with flash drives (NVMs/SSDs).

Solution: SCAN and C-SCAN aim to reduce the movement of the disk arm.
An NVM does not have an arm or physical movements that would benefit from
subsequent requests being close to each other.

The following picture shows two RAID configurations: Configuration 1 uses
RAID 1 (mirrored disks), where Disk 3 mirrors Disk 1 and Disk 4 mirrors
Disk 2. Configuration 2 uses RAID 4 (block-interleaved parity), where Disk 3
is the parity disk.

Disk 1 Disk 2

C

Disk 3

C

Disk 4

Configuration 1

Disk 1 Disk 2

P

Disk 3

Configuration 2

4.c) [2 points] For each configuration: list all combinations of disks that
would lead to data loss if they fail simultaneously.

Solution: In Configuration 1 the following combinations result in data loss:
Disk 1 + Disk 3; Disk 2 + Disk 4; (optional: any combination of 3 or more
disks).

In Configuration 2 any combination of 2 or more disks results in data loss.

4.d) [3 points] Consider the basic implementation of a file system via FUSE
as in Project 3 (without potential extensions). Name three ways in which
this implementation differs from practical file systems.

10

Solution: (It is intentional that the students have to know/remember the
project.) Example answers (there are more):

• The naive file system from Project 3 was implemented as an unstructured
array of inodes. Essentially any operation on the file system requires a scan
of the entire array. For practical file systems this would be too inefficient.

• In Project 3, each file has the same fixed size. A practical file system
would need variable size files, which also requires block allocation and
other features.

• FUSE implements a file system in user mode. Usually, file system func-
tionality runs in kernel mode.

4.e) [3 points] Describe in 2-3 sentences what contiguous allocation is in the
context of a file system. Name one advantage and one disadvantage.

Solution: In contiguous allocation we allocate a contiguous range of space/blocks
of a storage system to files. The file-control-block/inode then contains the first
and the first physical address of the file and the length.

Advantage: easy and efficient to determine logical-to-physical mapping.
Disadvantage: can lead to external fragmentation.

4.f) [2 points] In 2-3 sentences, describe an alternative to contiguous alloca-
tion.

Solution: Several possible answers. Alternatives discussed in class were linked
allocation and indexed allocation.

Linked allocation: the blocks allocated to a file form a linked list. The
file-control-block/inode contains a pointer to the first block, then each block
contains (apart from the data) a pointer to the next block.

Indexed allocation: The file-control-block/inode contains a pointer to a
special index block. The index block contains an array of pointers to all blocks
allocated to this file.

11

