
DM510: Introduction and Overview

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Organization of course

• Brief introduction to operating system: prerequisites and grand tour

Vote for your favourite operating system

https://etc.ch/8fFX

• Microsoft Windows

• macOS

• Linux (any distribution)

• Android

• iOS

• chromeOS

https://etc.ch/8fFX


Your teacher poll: https://etc.ch/8fFX

Lars Rohwedder

Short Bio
• Since Oct. 2024: Associate prof. at IMADA, SDU.

• 2022-2024: Assistant prof. at Maastricht
University

• 2019-2021: Post-Doc at EPFL

• 2019: PhD from University of Kiel

• Nowadays research focus on algorithms

• Focus on systems during early career: Research
assistant at Oracle, 2013-2014, and VMWare,
2015 (both San Francisco Bay Area)

Teaching Assistant
Eva Agerbo Rindom is handling the exercise sessions in both sections

https://etc.ch/8fFX


Your teacher poll: https://etc.ch/8fFX

Lars Rohwedder

Short Bio
• Since Oct. 2024: Associate prof. at IMADA, SDU.

• 2022-2024: Assistant prof. at Maastricht
University

• 2019-2021: Post-Doc at EPFL

• 2019: PhD from University of Kiel

• Nowadays research focus on algorithms

• Focus on systems during early career: Research
assistant at Oracle, 2013-2014, and VMWare,
2015 (both San Francisco Bay Area)

Teaching Assistant
Eva Agerbo Rindom is handling the exercise sessions in both sections

https://etc.ch/8fFX


Course goals poll: https://etc.ch/8fFX

• Understand what an operation system does

• How it provides these services

• How to use an operating system’s services

• How to modify/program an operating system’s services

Placement within your curriculum
• Natural continuation of DM548: Computer architecture

• Apart from DM548 probably lowest abstraction level among all CS courses

Practical skills from this course
• improve your (low level) systems programming skills

• improve your Linux skills

• (for high level programming) understand and solve performance issues

https://etc.ch/8fFX


Course goals poll: https://etc.ch/8fFX

• Understand what an operation system does

• How it provides these services

• How to use an operating system’s services

• How to modify/program an operating system’s services

Placement within your curriculum
• Natural continuation of DM548: Computer architecture

• Apart from DM548 probably lowest abstraction level among all CS courses

Practical skills from this course
• improve your (low level) systems programming skills

• improve your Linux skills

• (for high level programming) understand and solve performance issues

https://etc.ch/8fFX


Course goals poll: https://etc.ch/8fFX

• Understand what an operation system does

• How it provides these services

• How to use an operating system’s services

• How to modify/program an operating system’s services

Placement within your curriculum
• Natural continuation of DM548: Computer architecture

• Apart from DM548 probably lowest abstraction level among all CS courses

Practical skills from this course
• improve your (low level) systems programming skills

• improve your Linux skills

• (for high level programming) understand and solve performance issues

https://etc.ch/8fFX


Course organization poll: https://etc.ch/8fFX

• 17 lectures between 03-02-2025 and 05-05-2025

• 12 exercise sessions to facilitate content from lecture, exercise sheet to complete
before each session

• some backup dates in case of sickness, etc.
• 3 programming projects (in teams of 2):

• from 06-02-2025 to 04-03-2025
• from 04-03-2025 to 08-04-2025
• from 08-04-2025 to 20-05-2025

Assessment
• 80% of grade comes from written exam during exam period

• only content from textbook (next slide), consult slides and exercises for narrowing
• exception: one exercise on contents of programming projects

• 20% comes from programming projects

https://etc.ch/8fFX


Resources poll: https://etc.ch/8fFX

Textbook
• Lectures based on different chapters from book

• In stock at adademic books

• Not strict requirement, but can be helpful next to the
lectures

Additional resources
• https://larsrohwedder.com/teaching/dm510-25 for everything you need (link also

on itslearning)

• Online sources for Linux specific documentation (relevant for programming
exercises), see course website

• Explanations of tools used throughout course, see course website

https://etc.ch/8fFX
https://larsrohwedder.com/teaching/dm510-25


Definition of Operating System



Components of an operating system

Boundaries of operating system are unclear.

Shipped in a typical OS
• bootloader

• kernel (main program of operating system)

• device drivers

• system programs: graphical user interface, terminal, file browser, device
management, etc.

• application/user programs: PDF viewer, web browser, etc.

• middleware: APIs and software frameworks (e.g. python/java runtime).

• . . .



Role of operating system

User view
• Execute user programs

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

System view
• kernel program must run at all times

• User programs interact with hardware
only through kernel, which acts as:
resource allocator: decide who gets
which hardware resources
control program: prevent errors and
improper use



Hardware Support/Requirements



Typical components of a computer

• Various controllers (small processing
units) for different devices
(keyboard, GPU, network, etc.)
execute concurrently

• Device controllers have local buffers
of limited size



CPU architecture

Von Neumann Architecture

• Instructions and data are fetched from
same main memory

• Interaction with devices via
I/O request: from CPU to device
interrupt: device notifies CPU of event
data transfer: to and from local buffers

• For efficiency, devices can directly read
and write to main memory via
direct memory access (DMA). CPU
interaction only before and after transfer
of a entire block of data



Storage

• volatile storage is
lost when computer
turned off

• kernel organizes
non-volatile storage
with file systems, etc.



Interrupts

CPU has an interrupt bit that is
checked at every instruction. If it is
set/active, we interrupt process and
execute an interrupt handler of the
kernel. Afterwards we can resume
interrupted process.



Interrupts (cont.)

• Interrupts can therefore transfer the control over CPU from user processes to kernel

• Transfer requires non-trivial context switch: Need to backup registers, program
counter, etc. and restore them later

• Examples of hardware interrupts: I/O transfer finished, timer, keyboard input

• Sometimes software (CPU instructions) intentionally or unintentionally causes
interrupts and gives control back to kernel. A software interrupt is called a trap1

• Everytime a user program makes a request to operating system, a system call,
this is done by issuing a trap

• Examples of unintentional traps are errors (e.g., division by zero) or page faults

1terminology in literature is inconsistent.



Interrupt table

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detect overflow
5 bound range exception
...
32-255 maskable interrupts

• Different types of interrupts
specified in interrupt table

• Table used to jump to different
handlers depending on type

• Some interrupt types can be
masked: turned off by special
instruction

• Prioritization can be necessary:
decides when one interrupt can
preempt other interrupt handler



Dual-mode Operation

• Each CPU core has a mode bit implemented in hardware that indicates user mode
(= user process is active) or kernel mode (= kernel is active)

• Certain instructions are privileged and can only be executed when in kernel mode.
Example: I/O requests to devices

• This is for protection against errors and malicious software

• Modern CPUs have more than two modes, for example for virtual machines or
more fine-grained control over privileges



Multi-user, Multitasking,
Parallelism



Users

• Operating system maintains persistent table of several users

• Users can belong to groups

• Processes and files are owned by specific users

• For security/protection: Access privileges per user/group and file/program.
Example: Typical Linux program “apt” (package manager) can only be executed by
superuser (root).

Note: not to be confused with privileged instructions (kernel/user mode)



Multitasking

main memory

• Many processes (each with multiple threads) and users can be
active at the same time

• Each one wants low response time (< 1 second) and fair share
of resources

• Resource utilization should be high

• Synchronization: Concurrent access to shared
resources/devices needs to be safe

Sharing of resources is mostly hidden from processes
• CPU scheduler decides which process to run next

• Timers (and interrupts) to take control from process if execution too long

• Virtual memory ensures that processes do not see memory of other processes

• Exception: synchronization usually needs to be done explicitly



Physical parallelism

Modern computers have several CPUs or CPU cores, complicating CPU scheduling,
synchronization, and caching

Multiprocessor
Multicore



Special Computing System
Environments



Computer cluster

Several computers linked through network that
have a common purpose

Use-cases
• High-availability (reliability)

• High-performance-computing (parallelism)

Source: Wikipedia



Cloud computing and virtual machines

Cloud computing
• Services and computing is out-sourced to

machines of cloud provider

• Via internet or other network

• Cloud provider runs many virtual machines
(serving many customers) on each physical
machines

Virtual machine
• An operation system runs inside another (different) host operation system

• Used to run otherwise incompatible programmes

• Used to “sandbox” applications (protect others from it)

• Sometimes specialized host OS is used, e.g. VMware ESX and Citrix XenServer



Embedded systems and real-time systems

Embedded system
• Small device

• Often specialized functionality

• Limited resources (CPU, memory, UI,. . . )

• Simplified OS

Real-time system
• Responsiveness dominates other

requirements

• Guarantees for worst-case response time
needed. Much more important than average
response time or efficient resource utilization

Source: Detroit news

Often both coincide: car electronics, traffic lights, smart home, industrial robots . . .



Mobile computing

Handheld devices
• Some overlap with embedded systems

• Limited battery makes energy saving a priority

• OS typically ships with a lot of middleware

Source: Wikipedia Source: Wikipedia



Important Operating Systems



Free software

Unix/Unix-like operating systems

• implement operating system standardization for APIs (known as POSIX),
command-line, “philosophy”, etc.

• Well known examples: Linux, BSD-Unix, MacOS

• Leads to some compability between systems

GNU/Linux

• GNU is a vast collection of free software projects initiated by
Richard Stallman’s Free Software Foundation

• Linux is Unix-like OS initially developed by Linus Torwalds,
now contains contributions from thousands of volunteers

• Most famous free and open-source operating system

• Basis for mobile operating system Android



Proprietary software

Microsoft Windows
• 70% market share for desktop computers

• closed-source and licensed

• not UNIX-based

MacOS
• Open-source kernel (based on BSD-Unix)

• Contains also closed-source/proprietary components

• Used almost exclusively with Apple hardware

• Basis for mobile operating system iOS


	Definition of Operating System
	Hardware Support/Requirements
	Multi-user, Multitasking, Parallelism
	Special Computing System Environments
	Important Operating Systems

