
DM510: I/O Systems and Networks

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 12 of course book

• Chapter 19 of course book



I/O Systems



Devices

• Huge number of different types of devices, for example:

network card hard disk
GPU

• Controller: small processor on device operating a device asynchronously from
CPU, usually with local memory



Connections to devices

• Port: Connection point, for example: serial port, USB port

• Bus: wires connecting devices, often capable of more than two endpoints. For
example: PCIe bus



Speed of busses



Low-level I/O interface

Memory-mapped I/O: Devices have registers, which are linked to CPU’s address
space. CPU writes/reads to them as it would to main memory. Typical registers:

• data-in register to read from device

• data-out register to write to device

• status register e.g. completion of task, data availabile to read, error

• control register to start a command

Example: host
Host

• while (control.command-ready = 1) ;

• while (status.busy = 1) ; // busy wait

• data-out = produce()

• control.command-ready = 1

Example: controller
• while (control.command-ready = 0) ;

// busy wait

• status.busy = 1

• control.command-ready = 0

• consume(data-out)

• status.error = 0

• status.busy = 0



Low-level I/O interface

Memory-mapped I/O: Devices have registers, which are linked to CPU’s address
space. CPU writes/reads to them as it would to main memory. Typical registers:

• data-in register to read from device

• data-out register to write to device

• status register e.g. completion of task, data availabile to read, error

• control register to start a command

Details
• Some devices support FIFO buffers for several commands at a time

• Notification to CPU can be via interrupts

• Low level device I/O privileged (only from kernel mode) for protection



Direct memory access (DMA)

Programmed I/O (CPU copies byte by byte) on large data can be performance hit

DMA
• CPU sends only command

and address of data in main
memory, but not data itself

• Controller directly reads and
writes from main memory

• Controller sends interrupt
when done

• Device may occupy memory
bus, delaying CPU-memory
communication



Driver

• Drivers hide most of the low level details of device communication

• In Unix: drivers expose devices in file system (/dev) and with major/minor
numbers (type of device and instance)



High-level (application) I/O interface

Interfaces provided by drivers usually standardized, with some variations:

Device access in Linux
• Most devices are exposed

as file-like objects in file
directory, can be opened,
closed, read from, written
to as files

• mmap can map device to
address space for random
access (if device capable)

• Socket API for network
connections (TCP/UDP)



Abstraction

Often decision has to be made where to implement functionality. Tradeoffs:



Networks



Environment and goals

Goals and challenges
• Allow communication between different hosts (computers or other devices)

• Applications can establish connection to other applications on (usually) different
host and use it as reliable bi-directional stream of bytes (see TCP later).

• How does data reach correct LAN, host, application? How to achieve reliability?

Types of networks
• Local-area network (LAN): hosts

all within small geographical area,
e.g. home, office, university

• Wide-area network (WAN): hosts
span large geographical area, e.g.,
Internet / World Wide Web



Environment and goals

Goals and challenges
• Allow communication between different hosts (computers or other devices)

• Applications can establish connection to other applications on (usually) different
host and use it as reliable bi-directional stream of bytes (see TCP later).

• How does data reach correct LAN, host, application? How to achieve reliability?

Types of networks
• Local-area network (LAN): hosts

all within small geographical area,
e.g. home, office, university

• Wide-area network (WAN): hosts
span large geographical area, e.g.,
Internet / World Wide Web



Protocol stacks

bits of a packet
and their role

• Typical network communication is implemented as stack of
layered protocols that add more and more abstraction,
each protocol making use of the next lower protocol

• Header: bits of a message reserved for necessary
information of each protocol

• OSI model is a classical formalization for roles of layers,
but not all are used in modern technology, details omitted

• We focus here on the most prominent TCP/IP +
Ethernet/WiFi/mobile technology

Application view
Only application layer (e.g. TCP) is exposed to applications,
lower layers (e.g., IP layer, Ethernet) almost never directly used



Ethernet (data-link layer)

• Network card sends and receives unreliable bit-stream via physical transmission

• Goal of Ethernet: send variable-size packets between hosts in same LAN

• WiFi or mobile networks have similar role to Ethernet

• Every Ethernet-capable device has
unique Ethernet/MAC address

• Packets have source and
destination MAC addresses

• Special broadcast address to
target all hosts in LAN, e.g. to
discover other hosts

• Checksum to detect bit errors
(discard packet if error detected)



Internet protocol / IP (network-layer)

• Goal of internet protocol: send packages to any host in internet (WAN)

• Each host has unique IP address
(slight simplification; due to lack of
addresses in IPv4 sometimes
protocol abused)

• Routers (devices connecting
different LANs) forward packages to
correct direction using routing tables

Domain name system (DNS)

• Instead of IP addresses we are often given domain names, e.g. sdu.dk,
wikipedia.org

• Name servers are hosts that translate domain names into IP addresses



User datagram protocol / UDP (transport layer)

• Goal of UDP: Bring packets to correct application

• Each UDP packet contains a source and a destination port

• Applications can listen to specific
ports to receive packets sent to this
port (at most one application per
port)

• Connectionless protocol, but source
port can be used for response

• No guarantee or acknowledgement
that packets arrive, no guarantee
that they arrive in order



Internet protocol / TCP (transport layer)

• Goal of TCP: establish connection of reliable byte stream between applications on
(usually) different hosts

• Used for vast majority of applications (much more than UDP)

• Similar to UDP, TCP packets contain a
source and a destination port

• Applications can listen to specific ports to
accept connections

• 3-way handshake to establish connection

• Sequence numbers and acknoledgements
(for sequence numbers), possible
retransmissions (if acknoledgement missing)
to ensure in-order reliable stream



Other protocols

• Inside TCP, other protocols like HTTP (access to websites), FTP (file
transmission), SMTP (email), SSH (remote terminal) etc. are used

• Security layer for end-to-end encryption may be used (e.g. in SSH or HTTPs)


	I/O Systems
	Networks

