
DM510: File System Interface

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 13 of course book
• Part of Chapter 15
• Next lecture: Chapter 14 (Implementation of file systems)
• Next programming project: implement a file system



Overview



Role of a file system

• In the form of a file system, operating systems provide formats and routines
to store and retrieve data (usually) on non-volatile storage

• A file system stores file contents (data in various formats), additional
attributes for files, and directory information to logically organize the files



Files



File types

• Files have various roles:
pictures, texts, executables…

• Internal file format varies
greatly based on either text
(ASCII, UTF-8, etc.) or raw
binary data, often indicated by
file ending

• Often sophisticated
programmes exist to open or
edit specific file formats



File attributes

Along with the file contents, various meta-data on files is stored

Examples
• File name
• Identifier: unique number used
internally

• Protection: ownership and
permissions

• Timestamp

File attributes are usually stored in
directory section of file system

F 1 F 2
F 3

F 4

F n



File protection

• Each file belongs to a specific user (“owner”) and a specific group (“owning
group”). Even on systems used by only one person, there is usually at least
one regular user and one superuser (root, admin, etc.)

• In Unix different permissions to read/write/execute a file are given to owner,
users of file’s group, and other users. Sometimes indicated by three tripels:

rwxrwxrwx
Forbidden actions,are replaced by ’-’. For example, only owner can execute:

rwxrw-rw-
We can also write decimal number based on the three bits. Previous example:

766
because 7 = 1 1 1 = rwx and 6 = 1 1 0 = rw−

• Permissions and ownership can be changed by chmod, chown, and chgrp



File access

Sequential access
• We keep current position pointer with every open file
• Read and write increases current position after operation
• Rewind/seek operation to change current position



File access

Sequential access
• We keep current position pointer with every open file
• Read and write increases current position after operation
• Rewind/seek operation to change current position

Random access and other
• Contents of file may be accessed by
position, like array

• In Unix: mmap, see previous demo
• For fast access: an index file (can be
part of the same file) contains data
structure that provides fast
mapping of a key to position in file



Directories



Purpose of directories

Directories …

• logically organize files
• make them easy to find
• group them by roles, e.g. in Unix: executables /bin, configuration files /etc,
user specific files /home/<username>…

Should allow operations of

• searching for files, creating/deleting/renaming files and directories, listing
directory content, traversing file system



Tree directory structure

• Natural recursive structure of files and directories: directories can contain
other directories or files

• There is one special
root directory /

• Each file or directory is
uniquely identified by
path from root, e.g.:
/spell/mail/exp

• Implementation of
operations (such
e.g. searching)
straight-forward

Circles: files

Rectangles: file or directory metadata



Acyclic graph structure

• Sometimes usefull to allow same file/subdirectory to be in several directories

• Operations more complicated: for
efficiency, same directory should
not be searched several times

Implementation via links
• Hard links: several directory
entries point to same content

• Keep track of reference count
(number of hard links to content)
to know when it can be removed

• Soft links: directory entry
redirects to other directory entry



General graph structure

• One could even allow cycles…
• Reference count not enough, may need time consuming garbage collection

Might be simpler to disallow cycles,
but how?
• Cycle detection (also time
consuming)

• Disallow hard links for directories



File System Mounting



Mounting

• Storage devices need to be mounted into root file system before they can be
accessed

• For that, we mount
device’s file system into a
mount point, in Unix a
directory in the root file
system

• If mount point was not
empty, its content is not
accessible until device is
unmounted Before mounting



Mounting

• Storage devices need to be mounted into root file system before they can be
accessed

• For that, we mount
device’s file system into a
mount point, in Unix a
directory in the root file
system

• If mount point was not
empty, its content is not
accessible until device is
unmounted After mounting



Mounting

• Storage devices need to be mounted into root file system before they can be
accessed

• For that, we mount
device’s file system into a
mount point, in Unix a
directory in the root file
system

• If mount point was not
empty, its content is not
accessible until device is
unmounted Before mounting



Mounting

• Storage devices need to be mounted into root file system before they can be
accessed

• For that, we mount
device’s file system into a
mount point, in Unix a
directory in the root file
system

• If mount point was not
empty, its content is not
accessible until device is
unmounted After mounting



Virtual file systems and remote file systems

• Operating system often use
abstraction of virtual file system,
which allows different internal
implementations, as long as they
provide the necessary interface

• Some file systems may even be
remotely connected through
network (TCP or UDP)

• Mounting and using network
storage creates other
consistency problems, which we
do not detail here (see
Chapter 15 for more information).


	Overview
	Files
	Directories
	File System Mounting

