DM510: File System Implementation

Lars Rohwedder

gdeglheglhedgdHe
¢ i ¢ i ¢

Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/0S10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html

Today'’s lecture

- Chapter 14 of course book

- Introduction to programming project 3: implement a file system

Overview

We assume the following basic abstraction of a hard drive is provided, e.g. by
driver:

- Hard drive is array of logical blocks of specific size (e.g. 4 KB) that can be
accessed by index

In this lecture, we are concerned with a (logical) file system responsible for

- Managing files, directories
- Managing protection and metadata

- Implementing file system operations, e.g. listing directory content,
adding/removing files, etc.

Project 3 and Concept For Very Naive
File System

Overview

- For Project 3 you will implement your own file system using FUSE
- Simplifying assumptions: files may have fixed size, efficiency not important
- Choose at least one sophisticated file system features (e.g., from this lecture)

FUSE
- Framework to write a file system in user space that can be mounted into Linux

- You “only” need to implement the callback functions defined in FUSE

Standard Program using Kernel Your file system
filesystem calls implemented with FUSE
® @
open FUSE module open
— J
@ 3
User space Kernel space User space

Project 3 structure overview

- For each directory and each file there is a meta-
file-control-block (FCB) / inode, here containing both e
meta-data (name, directory, etc.) and data of file -

- Persistent data can be an array of FCBs, ' data

- For persistence, dump data into file (of regular hard
drive) when unmounting and load when mounting

meta-

File system operations data
- Reading/writing: Write into data part of correct FCB

data

- Listing directory contents: requires scanning through
entire array of FCBs

- Creating/remove files and directories: Add/remove FCB
(may require rearranging FCBs and resizing array)

Towards Realistic File Systems

Components

In storage
May not all be separate in specific implementation:

- File-control blocks / inodes

- Directory structure

- Data blocks

- Auxiliary data structures (free block lists, etc.)

In main memory
- Open file table
- Cache

File control block (FCB)

- Stores all file meta-data and data itself or where to find data

- In Unix usually called inode

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Directory structure

- Manages filenames, paths, (links to) FCP
- Many options: linear list, sorted list, tree structure, hash table

- Aspects to consider: space efficiency, performance, reliability, flexibility in
directory size

In-memory file system structures

For optimization: caches for

frequently accessed data:

- Directory structures ol 0]
y - a5
- Free data block list e | reathi
directory structure ey
- Frequently accessed file fle-controfblock
contents user space kernel memory secondary storage
(@)
Non-persistent data associated
R index
with file systems: LICL]
o]
- Open-file tables, containing J . data blocks
S . read (index) —— ~ |
e,g, current p osition In per-process system-wide file-control block
. . open-file table open-file table
Seq Uenual ﬁ [e aCCGSS, “St user space kernel memory secondary storage

processes that have file °

open

Allocation Methods

Contiguous allocation

- Each FCB contains pointer to first

/’\ .
block and number of) directory
consecutively allocated blocks count fle start length
: o1 11 2[] sl count 0 2
- Very efficient access (both f tr 14 3
random and sequential) 4Ll oL i Ir_“":‘” ;2 i
. 81 ol J10[1110 °
- Leads to external fragmentation tr f 6 2
120 11311411501
Extent based system 1601170718190
. . 1 I
extent: contiguous bFocks P
- zero or more extents in file ou 50 Tos 270
5 i list
e flexile 28[129[130 131[]
- How to list extents for each file? N
Combine with other approaches

Linked allocation

- Blocks for one file form a linked list:
FCB contains pointer to first and last
block; each block contains pointer
to next block of this file

- Storage overhead: Loses size of one
pointer for each block

- Slow random access: need to
traverse entire linked list, which is
scattered over hard drive (bad
locality)

- Weaknesses can be mitigated by FAT

directory

file
jeep

start
9

end
25

15[]
1718119

20[J21 %zﬂzslﬂ
24[J25[J26[J27[]

28[129[130 131[]
v

File-allocation table (for linked allocation)

- Store linking P
information in FAT
file-allocation table directory entry y
(FAT) in specific i o » K
segment /

- FAT has entry for 217[66 y
each block, with K Data
. 339 , blocks
index of next block] /
or special value for JY S— ,
end of list

. number of disk blocks —1 ’

- Better locality for FAT

random access +
FAT can be cached

Hard drive

Indexed allocation

- Each file contains pointer to
special index block

- Index block contains pointers to
all other blocks of file

- Overhead for index block

- Number of blocks for a file
limited by number of pointers
that fit into block

ol1 1 21 31
4[] 50 701
8l oll10

12001300143
16
20 121[122[A23[|
24[Jos[Joe[127[]
28[29[J30[131[]

~_

directory

file
jeep

index block
19
1

Indexed allocation

- Each file contains pointer to

special index block

- Index block contains pointers to |] o

all other blocks of file

a

- Overhead for index block 5 \E\

- Number of blocks for a file

limited by number of pointers Sy
that fit into block outer-index

index table file

Large files
- Can use linked list of index blocks

- or multilevel indexing

Combined scheme

- Example: Unix UFS

- 4KB blocks, 32 bit
addresses

file
metadata

single indirect
blocks

double indirect
blocks

triple indirect
blocks

Data structures for free blocks

Bit map
- For hard drive with n blocks, use
vector free € {0, 1}" of n bits.

- free[i] = 0: ith block is occupied
- free[i] = 1: ith block is free

- Space overhead: 1/bits-per-block

0001110100 -

\

5th block free

Data structures for free blocks

Bit map
- For hard drive with n blocks, use
vector free € {0, 1}" of n bits.

- free[i] = 0: ith block is occupied
- free[i] = 1: ith block is free

- Space overhead: 1/bits-per-block

Linked list
- No space overhead

- Efficient for allocating a single
block (or few)

- Contiguous allocation not easy

v

Data structures for free blocks

Bit map
- For hard drive with n blocks, use Grouping
vector free € {0,1}" of n bits. - Linked list of (not all) free blocks
- free[i] = 0: ith block is occupied - Inside each of the blocks in list
- free[i] = 1: ith block is free there are pointers to other free

blocks (not in the list)

- Space overhead: 1/bits-per-block

Linked list
—> free block —
- No space overhead L free block L
- Efficient for allocating a single —> free block —
block (or few) > free block —

—> free block —>

- Contiguous allocation not easy

v

Data structures for free blocks

AL Grouping
B R e e e e - Linked list of (not all) free blocks
vector free € {0,1}" of n bits. - Inside each of the blocks in list

there are pointers to other free

- free[i] = 0: ith block is occupied
blocks (not in the list)

- free[i] = 1: ith block is free
- Space overhead: 1/bits-per-block Counting

For more efficient use of contiguous

Linked list areas of free blocks:

- No space overhead .
- Pointer to first free block and

- Efficient for allocating a single count of following free blocks

block (or few)
- Contiguous allocation not easy

- Keep areas (first block and
J count) in linked list

Recovery

Recovery

- Modifications to file system often involves many write operations

- Problem: system crash may leave file system in inconsistent state, potentially
resulting in data loss

- Here our focus is on file system, not file content

Backups
- Copy entire hard drive content to
other storage device (disk,
magnetic tape, etc.)

Consistency checking

- Programs, e.g. fsck, can attempt

to detect and fix inconsistencies)
- If file system Is broken, restore

- Very slow and not guaranteed to from most recent backup

succeed

- Expensive and may still lose
recent data

Other solutions for recovery

Log structured file system
- File system maintains a log of transactions

- A transaction described the modification to perform

- All modifications are written to the log

- Transactions are asynchronously applied to the actual data

- After system crash, (incomplete) transactions from log are first applied

Not-in-place updates
- Instead of overwriting blocks with new data (in-place), create copy of block
and modify it
- Once finished, change link from old copy to new copy

	Project 3 and Concept For Very Naive File System
	Towards Realistic File Systems
	Allocation Methods
	Recovery

