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Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 14 of course book
• Introduction to programming project 3: implement a file system



Overview

We assume the following basic abstraction of a hard drive is provided, e.g. by
driver:

• Hard drive is array of logical blocks of specific size (e.g. 4 KB) that can be
accessed by index

In this lecture, we are concerned with a (logical) file system responsible for

• Managing files, directories
• Managing protection and metadata
• Implementing file system operations, e.g. listing directory content,
adding/removing files, etc.



Project 3 and Concept For Very Naive
File System



Overview

• For Project 3 you will implement your own file system using FUSE
• Simplifying assumptions: files may have fixed size, efficiency not important
• Choose at least one sophisticated file system features (e.g., from this lecture)

FUSE
• Framework to write a file system in user space that can be mounted into Linux
• You “only” need to implement the callback functions defined in FUSE



Project 3 structure overview

• For each directory and each file there is a
file-control-block (FCB) / inode, here containing both
meta-data (name, directory, etc.) and data of file

• Persistent data can be an array of FCBs,
• For persistence, dump data into file (of regular hard
drive) when unmounting and load when mounting

File system operations
• Reading/writing: Write into data part of correct FCB
• Listing directory contents: requires scanning through
entire array of FCBs

• Creating/remove files and directories: Add/remove FCB
(may require rearranging FCBs and resizing array)
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Towards Realistic File Systems



Components

In storage
May not all be separate in specific implementation:
• File-control blocks / inodes
• Directory structure
• Data blocks
• Auxiliary data structures (free block lists, etc.)

In main memory
• Open file table
• Cache



File control block (FCB)

• Stores all file meta-data and data itself or where to find data
• In Unix usually called inode



Directory structure

• Manages filenames, paths, (links to) FCP
• Many options: linear list, sorted list, tree structure, hash table
• Aspects to consider: space efficiency, performance, reliability, flexibility in
directory size



In-memory file system structures

For optimization: caches for
frequently accessed data:
• Directory structures
• Free data block list
• Frequently accessed file
contents

Non-persistent data associated
with file systems:
• Open-file tables, containing
e.g. current position in
sequential file access, list
processes that have file
open



Allocation Methods



Contiguous allocation

• Each FCB contains pointer to first
block and number of
consecutively allocated blocks

• Very efficient access (both
random and sequential)

• Leads to external fragmentation

Extent based system
• extent: contiguous blocks
• zero or more extents in file
• More flexible
• How to list extents for each file?
Combine with other approaches



Linked allocation

• Blocks for one file form a linked list:
FCB contains pointer to first and last
block; each block contains pointer
to next block of this file

• Storage overhead: Loses size of one
pointer for each block

• Slow random access: need to
traverse entire linked list, which is
scattered over hard drive (bad
locality)

• Weaknesses can be mitigated by FAT



File-allocation table (for linked allocation)

• Store linking
information in
file-allocation table
(FAT) in specific
segment

• FAT has entry for
each block, with
index of next block
or special value for
end of list

• Better locality for
random access +
FAT can be cached

Data
blocks

FAT

Hard drive



Indexed allocation

• Each file contains pointer to
special index block

• Index block contains pointers to
all other blocks of file

• Overhead for index block
• Number of blocks for a file
limited by number of pointers
that fit into block

Large files
• Can use linked list of index blocks
• or multilevel indexing
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Combined scheme

• Example: Unix UFS
• 4KB blocks, 32 bit
addresses



Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

000 1 1 1 0 1 0 0 …

5th block free

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy
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Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy

Grouping
• Linked list of (not all) free blocks
• Inside each of the blocks in list
there are pointers to other free
blocks (not in the list)

Counting
For more efficient use of contiguous
areas of free blocks:
• Pointer to first free block and
count of following free blocks

• Keep areas (first block and
count) in linked list



Recovery



Recovery

• Modifications to file system often involves many write operations
• Problem: system crash may leave file system in inconsistent state, potentially
resulting in data loss

• Here our focus is on file system, not file content

Consistency checking
• Programs, e.g. fsck, can attempt
to detect and fix inconsistencies

• Very slow and not guaranteed to
succeed

Backups
• Copy entire hard drive content to
other storage device (disk,
magnetic tape, etc.)

• If file system is broken, restore
from most recent backup

• Expensive and may still lose
recent data



Other solutions for recovery

Log structured file system
• File system maintains a log of transactions
• A transaction described the modification to perform
• All modifications are written to the log
• Transactions are asynchronously applied to the actual data
• After system crash, (incomplete) transactions from log are first applied

Not-in-place updates
• Instead of overwriting blocks with new data (in-place), create copy of block
and modify it

• Once finished, change link from old copy to new copy


	Project 3 and Concept For Very Naive File System
	Towards Realistic File Systems
	Allocation Methods
	Recovery

