
DM510: File System Implementation

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 14 of course book
• Introduction to programming project 3: implement a file system



Overview

We assume the following basic abstraction of a hard drive is provided, e.g. by
driver:

• Hard drive is array of logical blocks of specific size (e.g. 4 KB) that can be
accessed by index

In this lecture, we are concerned with a (logical) file system responsible for

• Managing files, directories
• Managing protection and metadata
• Implementing file system operations, e.g. listing directory content,
adding/removing files, etc.



Project 3 and Concept For Very Naive
File System



Overview

• For Project 3 you will implement your own file system using FUSE
• Simplifying assumptions: files may have fixed size, efficiency not important
• Choose at least one sophisticated file system features (e.g., from this lecture)

FUSE
• Framework to write a file system in user space that can be mounted into Linux
• You “only” need to implement the callback functions defined in FUSE



Project 3 structure overview

• For each directory and each file there is a
file-control-block (FCB) / inode, here containing both
meta-data (name, directory, etc.) and data of file

• Persistent data can be an array of FCBs,
• For persistence, dump data into file (of regular hard
drive) when unmounting and load when mounting

File system operations
• Reading/writing: Write into data part of correct FCB
• Listing directory contents: requires scanning through
entire array of FCBs

• Creating/remove files and directories: Add/remove FCB
(may require rearranging FCBs and resizing array)

meta-
data

data
FCB

meta-
data

data

...



Towards Realistic File Systems



Components

In storage
May not all be separate in specific implementation:
• File-control blocks / inodes
• Directory structure
• Data blocks
• Auxiliary data structures (free block lists, etc.)

In main memory
• Open file table
• Cache



File control block (FCB)

• Stores all file meta-data and data itself or where to find data
• In Unix usually called inode



Directory structure

• Manages filenames, paths, (links to) FCP
• Many options: linear list, sorted list, tree structure, hash table
• Aspects to consider: space efficiency, performance, reliability, flexibility in
directory size



In-memory file system structures

For optimization: caches for
frequently accessed data:
• Directory structures
• Free data block list
• Frequently accessed file
contents

Non-persistent data associated
with file systems:
• Open-file tables, containing
e.g. current position in
sequential file access, list
processes that have file
open



Allocation Methods



Contiguous allocation

• Each FCB contains pointer to first
block and number of
consecutively allocated blocks

• Very efficient access (both
random and sequential)

• Leads to external fragmentation

Extent based system
• extent: contiguous blocks
• zero or more extents in file
• More flexible
• How to list extents for each file?
Combine with other approaches



Linked allocation

• Blocks for one file form a linked list:
FCB contains pointer to first and last
block; each block contains pointer
to next block of this file

• Storage overhead: Loses size of one
pointer for each block

• Slow random access: need to
traverse entire linked list, which is
scattered over hard drive (bad
locality)

• Weaknesses can be mitigated by FAT



File-allocation table (for linked allocation)

• Store linking
information in
file-allocation table
(FAT) in specific
segment

• FAT has entry for
each block, with
index of next block
or special value for
end of list

• Better locality for
random access +
FAT can be cached

Data
blocks

FAT

Hard drive



Indexed allocation

• Each file contains pointer to
special index block

• Index block contains pointers to
all other blocks of file

• Overhead for index block
• Number of blocks for a file
limited by number of pointers
that fit into block

Large files
• Can use linked list of index blocks
• or multilevel indexing



Indexed allocation

• Each file contains pointer to
special index block

• Index block contains pointers to
all other blocks of file

• Overhead for index block
• Number of blocks for a file
limited by number of pointers
that fit into block

Large files
• Can use linked list of index blocks
• or multilevel indexing



Combined scheme

• Example: Unix UFS
• 4KB blocks, 32 bit
addresses



Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

000 1 1 1 0 1 0 0 …

5th block free

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy



Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy



Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy

Grouping
• Linked list of (not all) free blocks
• Inside each of the blocks in list
there are pointers to other free
blocks (not in the list)

free block
free block
free block
free block
free block



Data structures for free blocks

Bit map
• For hard drive with n blocks, use
vector free ∈ {0, 1}n of n bits.

• free[i] = 0: ith block is occupied
• free[i] = 1: ith block is free
• Space overhead: 1/bits-per-block

Linked list
• No space overhead
• Efficient for allocating a single
block (or few)

• Contiguous allocation not easy

Grouping
• Linked list of (not all) free blocks
• Inside each of the blocks in list
there are pointers to other free
blocks (not in the list)

Counting
For more efficient use of contiguous
areas of free blocks:
• Pointer to first free block and
count of following free blocks

• Keep areas (first block and
count) in linked list



Recovery



Recovery

• Modifications to file system often involves many write operations
• Problem: system crash may leave file system in inconsistent state, potentially
resulting in data loss

• Here our focus is on file system, not file content

Consistency checking
• Programs, e.g. fsck, can attempt
to detect and fix inconsistencies

• Very slow and not guaranteed to
succeed

Backups
• Copy entire hard drive content to
other storage device (disk,
magnetic tape, etc.)

• If file system is broken, restore
from most recent backup

• Expensive and may still lose
recent data



Other solutions for recovery

Log structured file system
• File system maintains a log of transactions
• A transaction described the modification to perform
• All modifications are written to the log
• Transactions are asynchronously applied to the actual data
• After system crash, (incomplete) transactions from log are first applied

Not-in-place updates
• Instead of overwriting blocks with new data (in-place), create copy of block
and modify it

• Once finished, change link from old copy to new copy


	Project 3 and Concept For Very Naive File System
	Towards Realistic File Systems
	Allocation Methods
	Recovery

