
DM510: Operating System Structure

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 2 of course book

• Introduction to first programming project



Operating System Services



Main services

The following services are provided to user programs or directly to the user via system
programs and user interface (command-line, graphical user interface, touch-screen,. . . )

Program execution: load program into memory and run, end execution

I/O operations: to file or device

File-system manipulation: read, write, create, delete, search, etc. files and directories

Communication: between processes or between computers of a network, mostly via
shared memory or message passing

Error detection: appropriate action to recover from errors, debugging facilities

Resource allocation: of CPU, main memory, file storage, I/O devices, etc.

Logging: statistics of resource usage, errors, etc.

Protection and security: protect processes/users from others or system from outside



Placement of services within operating system

Services are accessed by user/system programs via system calls



System Calls



Issuing system calls

System call in Linux

i n t code = s y s c a l l ( __NR_hellokernel , 4 2 ) ;

• Results in trap/software
interrupt, i.e., kernel takes over

• Kernel then executes specific
functions depending on type of
system call, in this example
__NR_hellokernel

• Parameters need to be passed
with system call. In Linux we
pass pointers or integers via
registers



Issuing system calls

System call in Linux

i n t code = s y s c a l l ( __NR_hellokernel , 4 2 ) ;

• Results in trap/software
interrupt, i.e., kernel takes over

• Kernel then executes specific
functions depending on type of
system call, in this example
__NR_hellokernel

• Parameters need to be passed
with system call. In Linux we
pass pointers or integers via
registers



Issuing system calls

System call in Linux

i n t code = s y s c a l l ( __NR_hellokernel , 4 2 ) ;

• Results in trap/software
interrupt, i.e., kernel takes over

• Kernel then executes specific
functions depending on type of
system call, in this example
__NR_hellokernel

• Parameters need to be passed
with system call. In Linux we
pass pointers or integers via
registers

Passing pointer to table of large parameter data



System calls in practice

• Using system calls directly is
inconvenient and error-prone: need to
know calling conventions.

• Instead of issuing system calls directly,
standard libraries/APIs are used,
whose implementation makes the
actual system calls

• informally, the API functions are also
referred to as “system calls”

Read from file in C (Unix)

char buf [ 5 1 2 ] ;
s s i z e_ t num = read ( f i l e , buf , 5 12 ) ;

APIs in Windows and Unix
Windows Unix

Process CreateProcess() fork()
control ExitProcess() exit()

WaitForSingleObject() wait()

File CreateFile() open()
management ReadFile() read()

WriteFile() write()
CloseHandle() close()

Device SetConsoleMode() ioctl()
management ReadConsole() read()

WriteConsole() write()

Information GetCurrentProcessID() getpid()
maintenance SetTimer() alarm()

Sleep() sleep()
...



System Programs



Role of system programs

Typical users access system services not via system calls or APIs, but via system
programs. They can be simple wrappers of system calls, but also significantly more
complex programs.



Important system programs and services

File management
Modify and navigate files and directories

• Functions: create, delete, copy,
rename, list

• Most operating systems provide
graphical file browser

• Also integrated in command lines
(in Unix: cd, ls, mkdir, rm, . . . )

Status information
Sometimes stored in files, sometimes
accessed via programs (graphical or
command line)

• Device information: disk space,
CPUs

• Date, time

• Performance, logs, debug
information

• system configuration (registry in
Windows; /etc/ directory in Linux)



Important system programs and services

File management
Modify and navigate files and directories

• Functions: create, delete, copy,
rename, list

• Most operating systems provide
graphical file browser

• Also integrated in command lines
(in Unix: cd, ls, mkdir, rm, . . . )

Status information
Sometimes stored in files, sometimes
accessed via programs (graphical or
command line)

• Device information: disk space,
CPUs

• Date, time

• Performance, logs, debug
information

• system configuration (registry in
Windows; /etc/ directory in Linux)



Important system programs and services (cont.)

File modification
• Text editor

• Search within file or filter contents

• Transformation (e.g. search and
replace)

Background services
• Often active from system boot to

shutdown

• Example: network daemon

• Known as services, subsystems,
daemons

Programming language support
• Compiler

• Interpreter

• Debugger

Communication
Virtual connections between

• processes

• users

• computer systems



Important system programs and services (cont.)

File modification
• Text editor

• Search within file or filter contents

• Transformation (e.g. search and
replace)

Background services
• Often active from system boot to

shutdown

• Example: network daemon

• Known as services, subsystems,
daemons

Programming language support
• Compiler

• Interpreter

• Debugger

Communication
Virtual connections between

• processes

• users

• computer systems



Important system programs and services (cont.)

File modification
• Text editor

• Search within file or filter contents

• Transformation (e.g. search and
replace)

Background services
• Often active from system boot to

shutdown

• Example: network daemon

• Known as services, subsystems,
daemons

Programming language support
• Compiler

• Interpreter

• Debugger

Communication
Virtual connections between

• processes

• users

• computer systems



Important system programs and services (cont.)

File modification
• Text editor

• Search within file or filter contents

• Transformation (e.g. search and
replace)

Background services
• Often active from system boot to

shutdown

• Example: network daemon

• Known as services, subsystems,
daemons

Programming language support
• Compiler

• Interpreter

• Debugger

Communication
Virtual connections between

• processes

• users

• computer systems



Details on specific system services



Executing programs

Dynamic linking and loading
• Copy executable (instructions and data)

to main memory

• Copy dynamically linked libraries into
memory if necessary: program code
shared by different programs (Windows:
.dll, Linux: .so)

• Link final library addresses (e.g. function
pointers) into executable’s code

• Set program counter register to first
instruction of executable’s code



Executing programs

Dynamic linking and loading

Example: command line
How does a command line in Linux execute a program, e.g. ./helloworld?

• Need to create new process using fork() system call

• The new process then calls linker and loader using exec()



Executing programs

Dynamic linking and loading

Example: command line

Binary (in-)compatibility

Usually executables only compatible with target operating system due to: file formats,
calling conventions, system calls

• Some languages (Java, Python,. . . ) only need compatible VM/intepreter

• Some “similar” operating systems (or versions) carefully maintain compatibility

• Application Binary Interface (ABI) is architecture equivalent of API, defines
how different components of binary code can interface for a given operating
system on a given architecture, CPU, etc.



Debugging

Kernighan’s Law
Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.

• Finding and fixing bugs: kernel generates log files for errors and core dump for
memory capture of crashed user program (similarly crash dump for crashed
system/kernel)

• performance tuning: periodically sample instruction pointer for statistics
(profiling), record data at specific events (tracing)



Bpftrace

bpftrace is a tool that makes it possible to execute user-specified scripts at various
kernel events (via eBPF) while ensuring system’s stability and performance.

Demo
See lecture/course website



Operating System Implementation



Development

• In low-level language C or C++, earlier assembly

• Some components (especially system programs)
may be in higher programming languages

• Developing an operating system is a highly
challenging task for Software Engineering due
to the requirements on security, performance, and
the huge size of the project

• Careful architectural decisions are necessary.
Common to all modern operating systems is a
modular structure, where different modules
encapsulate different functionality. Sometimes
modules can be even loaded dynamically while the
system is up, e.g. device drivers in Linux



Development

• In low-level language C or C++, earlier assembly

Linus Torwalds on C++ (2007)
> When I first looked at Git source code two things struck me as odd:
> 1. Pure C as opposed to C++. No idea why. Please don’t talk
> about portability, it’s BS.

*YOU* are full of bullshit.

C++ is a horrible language. It’s made more horrible by the fact that a
lot of substandard programmers use it, to the point where it’s much
much easier to generate total and utter crap with it. Quite frankly,
even if the choice of C were to do *nothing* but keep the C++
programmers out, that in itself would be a huge reason to use C.

<rant continues. . . >

• Some components (especially system programs)
may be in higher programming languages

• Developing an operating system is a highly
challenging task for Software Engineering due
to the requirements on security, performance, and
the huge size of the project

• Careful architectural decisions are necessary.
Common to all modern operating systems is a
modular structure, where different modules
encapsulate different functionality. Sometimes
modules can be even loaded dynamically while the
system is up, e.g. device drivers in Linux



Development

• In low-level language C or C++, earlier assembly

• Some components (especially system programs)
may be in higher programming languages

• Developing an operating system is a highly
challenging task for Software Engineering due
to the requirements on security, performance, and
the huge size of the project

• Careful architectural decisions are necessary.
Common to all modern operating systems is a
modular structure, where different modules
encapsulate different functionality. Sometimes
modules can be even loaded dynamically while the
system is up, e.g. device drivers in Linux



Development

• In low-level language C or C++, earlier assembly

• Some components (especially system programs)
may be in higher programming languages

• Developing an operating system is a highly
challenging task for Software Engineering due
to the requirements on security, performance, and
the huge size of the project

• Careful architectural decisions are necessary.
Common to all modern operating systems is a
modular structure, where different modules
encapsulate different functionality. Sometimes
modules can be even loaded dynamically while the
system is up, e.g. device drivers in Linux



Development

• In low-level language C or C++, earlier assembly

• Some components (especially system programs)
may be in higher programming languages

• Developing an operating system is a highly
challenging task for Software Engineering due
to the requirements on security, performance, and
the huge size of the project

• Careful architectural decisions are necessary.
Common to all modern operating systems is a
modular structure, where different modules
encapsulate different functionality. Sometimes
modules can be even loaded dynamically while the
system is up, e.g. device drivers in Linux



Monolithic architecture

• Linux and Windows are mostly monolithic
architectures: extremely large codebase, many
different parts depending on each other

• Leads to more challenging debugging and unit tests

• Generally better performance (lower overhead)
compared to other architectures

Linux



Layered architecture

• Each layer adds more abstraction

• Each layer uses only the functions
and services of lower layers

• Layers can be tested separately to
follow specification: easier testing
and debugging

• Disadvantages: specifying layers and
arrangement is challenging, high
function call overhead

• Appears to some extend in many
operating systems, but usually only
to a very limited amount



Microkernel architecture

• kernel very small; much of the operating system’s functionality moved to user mode

• User modules communicate via message passing

• Example: Mach kernel, used e.g. in MacOS

Pro/Con

+ More extendable,
portable, secure,
easier to debug

- Overhead due to
message passing and
switches between
user and kernel mode



More examples

Android
• Uses Linux kernel, very open

• Java for apps (with non-standard
API). For energy reasons:
ahead-of-time (AOT) instead of
just-in-time (JIT) compilation

iOS
• Based on MacOS

• very closed and restricted compared
to Android (and also MacOS)

• Objective-C for apps (compiles to
machine code)

MacOS and iOS

Android



Booting a system



Firmware and bootloader

• The first thing that is executed when a computer is powered on is the firmware,
usually stored in read-only memory (ROM). This firmware initializes hardware and
starts the bootloader. Most common firmware is UEFI (previously BIOS)

• The bootloader understands non-volatile storage (SSDs, HDDs, CDs, USB sticks)
and looks for specific boot partition that contain an operating system and all
information to start it. Either it waits for user selection or it automatically selects
one of the boot partitions and then starts the actual operating system. Common
bootloaders are GRUB and Windows Boot Manager



Firmware and bootloader

• The first thing that is executed when a computer is powered on is the firmware,
usually stored in read-only memory (ROM). This firmware initializes hardware and
starts the bootloader. Most common firmware is UEFI (previously BIOS)

• The bootloader understands non-volatile storage (SSDs, HDDs, CDs, USB sticks)
and looks for specific boot partition that contain an operating system and all
information to start it. Either it waits for user selection or it automatically selects
one of the boot partitions and then starts the actual operating system. Common
bootloaders are GRUB and Windows Boot Manager


	Operating System Services
	System Calls
	System Programs
	Details on specific system services
	Operating System Implementation
	Booting a system

