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Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/0S10/slide-dir/index.html


https://www.os-book.com/OS10/slide-dir/index.html

Today's lecture

e Chapter 3 of course book



Process Basics



Processes and programs

e Program: executable file, typically stored on hard disk (passive)

Process: An active instance of a program currently in execution

There may be multiple processes that all come from the same program

e A process can have multiple threads of execution



Processes and programs

e Program: executable file, typically stored on hard disk (passive)

Process: An active instance of a program currently in execution

There may be multiple processes that all come from the same program

e A process can have multiple threads of execution

We defer the discussion of threads to next lecture and consider
here only single-threaded processes J




States of a process

Possible states
e New: just created, but not executing, yet

e Running: currently being executed on CPU

Waiting: cannot execute until certain event occurs

Ready: can be executed, but is currently not

Terminated: process has ended

admitted interrupt i terminated

scheduler dispatch

1/0 or event completion ﬁ

1/0 or event wait



Data of a process

Internal data of a process (context)

e Current value of CPU registers

#include <stdio.h>
#include <stdlib.h>
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T e The program code/instructions,
int main(int argc, char *argv(]) .
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heap int i;
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iniazed R R variables, return addresses

melw:) text return 0;

e Data section: global variables
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Data of a process

#include <stdio.h>

mermory |96 39 Lo Internal data of a process (context)
stack -
T e registers
int main(int argc, char *argv(l) .
1 Cine saes: e text section
heap int i; —
uninditai?aliIEd ,_/ values = (int *)malloc(sizeof (int)*5); C StaCk
initialized for(i = 0; i < 5; i++) .
. data valuesti = L e data section
me?::)ry text return 0; h
® neap

Memory layout of C program

Additional data maintained by kernel (process control block)

e Process status

Scheduling information: e.g. priority

Accounting information: elapsed time, CPU time used, etc.

I/0O status information: devices allocated to process, open files, etc.




Context switch

e When kernel preempts a process, it
must save its context to be able to
restore it later

e Many context switches can impact

a system's overall performance

e Some architectures have hardware
support like multiple register sets

process P,

idle

operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,
o

reload state from PCB;

interrupt or system call

save state into PCB;

.
reload state from PCB,
executing H

idle

executing

idle



Process Creation and Termination



Process tree

e A process can create other processes through system calls

e This leads to a parent-child relationship among processes

systemd

pid=1

python
pid = 2808

logind sshd
pid = 8415 pid = 3028

sshd
pid =3610

tesh
pid = 4005

bash
pid = 8416
ps vim
pid = 9298 pid = 9204




Fork system call

e In Unix systems, the fork() fork in C

system call is used to create a new . )
int main() {

process pid t pid;
It creat t f th pid = fork ();
e |t creates an exact copy of the i (pid < 0) {
caller, including context (data fprintf(stderr, "error");
i }
section, heap, stack, etc.) tise if (pid — 0) {
e Only difference is value returned by printf("child—process");
fork () will be different: zero for Lse [
child process, process id of child for printf("parent—process");
wait (NULL)
the parent process printf("child—terminated");
e Often system call to exec() 3
return O0;

(loader) follows immediately after )

forking




Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure
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Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

e Return code is kept by kernel until collected by parent with wait () system call
e Process that has ended, but return code has not been collected is called zombie
e Process who's parent terminates without calling wait () is an orphan

e Parent can terminate child using abort () system call

Reasons for aborting a process
e Task performed by process is no longer needed
e Kernel needs to reclaim resources

e Sometimes child process is not allowed to continue when parent terminates




Cooperation and Communication



Cooperation

e Some processes work independently, other cooperate regarding their tasks

e Cooperation requires means of communication provided by the kernel



Cooperation

e Some processes work independently, other cooperate regarding their tasks

e Cooperation requires means of communication provided by the kernel

Example: Chrome Browser
An extreme example of cooperation is Google's Chrome web browser

e Separate renderer process for each tab + main process +
plug-in processes

e More secure by restricting priveledges of websites

e More reliable since single malfunctioning websites does not
crash entire browser




Communication models

Two main variants of communication: (a) shared memory and (b) message passing

|: process A process A —
shared memory :I — process B
process B

message queue
—>mg [my [my[ms] ... [mp

kernel
kernel

(a) (b)



Producer-consumer with shared memory

The following example has one process produce items and the other consume them.
Both processes have access to the following data:

#define BUFLEN 10
item buffer [BUFLEN];
int in = 0;

int out = 0;

Producer

while (true) {

item next produced = produce();
while (((in + 1) % BUFLEN) = out)

i /* busy waiting */
buffer[in] = next produced;
in = (in + 1) % BUFLEN;

Consumer

while (true) {
while (in == out)
;. /* busy waiting */
item next consumed = buffer[out];
out = (out + 1) % BUFLEN;
consume (next consumed);

}




Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = uninitialized
buffer[1] = uninitialized

Producer A Producer B
o buffer[in] = itemA; e buffer[in] = itemB;
e in = (in + 1) % BUFLEN; e in = (in + 1) % BUFLEN;
[ ] [ ]
[ ] [ ]
V.




Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = itemA
buffer[1] = uninitialized

Producer A Producer B
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Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; .
o e buffer[in] = itemB;
e in = (in + 1) % BUFLEN; e in = (in + 1) Y% BUFLEN;
° °
y




Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 1

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; .
° e buffer[in] = itemB;
° e in = (in + 1) 7% BUFLEN;
e in = (in + 1) % BUFLEN; °
4




Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 2

out = 0
buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; °
° e buffer[in] = itemB;
o e in = (in + 1) % BUFLEN;
e in = (in + 1) Y% BUFLEN; °
y




Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 2

out = 0

buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; °
o e buffer[in] = itemB;
L4 e in = (in + 1) % BUFLEN;
e in = (in + 1) Y% BUFLEN; °
y

Only specific instructions are guaranteed to be executed atomically (not preempted).

Even within a single line the code can be preempted



Message passing

kernel provides system calls send(1ink, message) and receive(link, &message)
Design decisions

o fixed length or variable length messages

e unidirectional or bidirectional

e means of establishing link:

e By process id (direct communication)
e Parent process creates link, which child can access (e.g. ordinary pipes)
e Via ports or file system (e.g. named pipes)

e synchronous (send/receive blocks until other process calls counterpart) or
asynchronous (continue immediately)

o buffering: zero capacity, bounded capacity, unbounded capacity




Message passing

kernel provides system calls send(1ink, message) and receive(link, &message)

Design decisions

Producer-consumer with message passing:

Producer Consumer
while (true) {

while (true
(=) o item next consumed;

item next produced = produce();

ive(link , &next d);
send(link , next produced); receive(lin next consumed )

consume (next consumed );

; }




Other forms of communication

e TCP/IP connection using sockets

e Remote procedure calls and local procedure calls

We will defer discussion to the networks lecture
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