DMb510: Processes

Lars Rohwedder

ghegleghegdHe
FTo WEIR=To W=7 o W™

Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/0S10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html

Today's lecture

e Chapter 3 of course book

Process Basics

Processes and programs

e Program: executable file, typically stored on hard disk (passive)

Process: An active instance of a program currently in execution

There may be multiple processes that all come from the same program

e A process can have multiple threads of execution

Processes and programs

e Program: executable file, typically stored on hard disk (passive)

Process: An active instance of a program currently in execution

There may be multiple processes that all come from the same program

e A process can have multiple threads of execution

We defer the discussion of threads to next lecture and consider
here only single-threaded processes J

States of a process

Possible states
e New: just created, but not executing, yet

e Running: currently being executed on CPU

Waiting: cannot execute until certain event occurs

Ready: can be executed, but is currently not

Terminated: process has ended

admitted interrupt i terminated

scheduler dispatch

1/0 or event completion ﬁ

1/0 or event wait

Data of a process

Internal data of a process (context)

e Current value of CPU registers

#include <stdio.h>
#include <stdlib.h>

high

memory | 2195201 including program counter
stack
T e The program code/instructions,
int main(int argc, char *argv(]) .
1 ine sten called text section
heap int i;
PG :j Y S ——— e Stack: function parameters, local
iniazed R R variables, return addresses

melw:) text return 0;

e Data section: global variables

M layout of C .
emory fayout of L. program e Heap: dynamically allocated

memory

Data of a process

#include <stdio.h>

mermory |96 39 Lo Internal data of a process (context)
stack -
T e registers
int main(int argc, char *argv(l) .
1 Cine saes: e text section
heap int i; —
uninditai?aliIEd ,_/ values = (int *)malloc(sizeof (int)*5); C StaCk
initialized for(i = 0; i < 5; i++) .
. data valuesti = L e data section
me?::)ry text return 0; h
® neap

Memory layout of C program

Additional data maintained by kernel (process control block)

e Process status

Scheduling information: e.g. priority

Accounting information: elapsed time, CPU time used, etc.

I/0O status information: devices allocated to process, open files, etc.

Context switch

e When kernel preempts a process, it
must save its context to be able to
restore it later

e Many context switches can impact

a system's overall performance

e Some architectures have hardware
support like multiple register sets

process P,

idle

operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,
o

reload state from PCB;

interrupt or system call

save state into PCB;

.
reload state from PCB,
executing H

idle

executing

idle

Process Creation and Termination

Process tree

e A process can create other processes through system calls

e This leads to a parent-child relationship among processes

systemd

pid=1

python
pid = 2808

logind sshd
pid = 8415 pid = 3028

sshd
pid =3610

tesh
pid = 4005

bash
pid = 8416
ps vim
pid = 9298 pid = 9204

Fork system call

e In Unix systems, the fork() fork in C

system call is used to create a new .)
int main() {

process pid t pid;
It creat t f th pid = fork ();
e |t creates an exact copy of the i (pid < 0) {
caller, including context (data fprintf(stderr, "error");
i }
section, heap, stack, etc.) tise if (pid — 0) {
e Only difference is value returned by printf("child—process");
fork () will be different: zero for Lse [
child process, process id of child for printf("parent—process");
wait (NULL)
the parent process printf("child—terminated");
e Often system call to exec() 3
return O0;

(loader) follows immediately after)

forking

Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

e Return code is kept by kernel until collected by parent with wait () system call

Termination

e A process terminates by using the exit() system call (sometimes implicit when

returning from main() function). It provides a return value that usually indicates
success of failure

e Return code is kept by kernel until collected by parent with wait () system call

e Process that has ended, but return code has not been collected is called zombie

Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

Return code is kept by kernel until collected by parent with wait () system call

Process that has ended, but return code has not been collected is called zombie

Process who's parent terminates without calling wait () is an orphan

Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

e Return code is kept by kernel until collected by parent with wait () system call
e Process that has ended, but return code has not been collected is called zombie
e Process who's parent terminates without calling wait () is an orphan

e Parent can terminate child using abort () system call

Termination

e A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

e Return code is kept by kernel until collected by parent with wait () system call
e Process that has ended, but return code has not been collected is called zombie
e Process who's parent terminates without calling wait () is an orphan

e Parent can terminate child using abort () system call

Reasons for aborting a process
e Task performed by process is no longer needed
e Kernel needs to reclaim resources

e Sometimes child process is not allowed to continue when parent terminates

Cooperation and Communication

Cooperation

e Some processes work independently, other cooperate regarding their tasks

e Cooperation requires means of communication provided by the kernel

Cooperation

e Some processes work independently, other cooperate regarding their tasks

e Cooperation requires means of communication provided by the kernel

Example: Chrome Browser
An extreme example of cooperation is Google's Chrome web browser

e Separate renderer process for each tab + main process +
plug-in processes

e More secure by restricting priveledges of websites

e More reliable since single malfunctioning websites does not
crash entire browser

Communication models

Two main variants of communication: (a) shared memory and (b) message passing

|: process A process A —
shared memory :I — process B
process B

message queue
—>mg [my [my[ms] ... [mp

kernel
kernel

(a) (b)

Producer-consumer with shared memory

The following example has one process produce items and the other consume them.
Both processes have access to the following data:

#define BUFLEN 10
item buffer [BUFLEN];
int in = 0;

int out = 0;

Producer

while (true) {

item next produced = produce();
while (((in + 1) % BUFLEN) = out)

i /* busy waiting */
buffer[in] = next produced;
in = (in + 1) % BUFLEN;

Consumer

while (true) {
while (in == out)
;. /* busy waiting */
item next consumed = buffer[out];
out = (out + 1) % BUFLEN;
consume (next consumed);

}

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = uninitialized
buffer[1] = uninitialized

Producer A Producer B
o buffer[in] = itemA; e buffer[in] = itemB;
e in = (in + 1) % BUFLEN; e in = (in + 1) % BUFLEN;
[] []
[] []
V.

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = itemA
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; °
e in = (in + 1) % BUFLEN; e buffer[in] = itemB;
° e in = (in + 1) % BUFLEN;
° °
J

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 0

out = 0
buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; .
o e buffer[in] = itemB;
e in = (in + 1) % BUFLEN; e in = (in + 1) Y% BUFLEN;
° °
y

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 1

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; .
° e buffer[in] = itemB;
° e in = (in + 1) 7% BUFLEN;
e in = (in + 1) % BUFLEN; °
4

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.

Consider two producers running the previous code simultaneously:

in = 2

out = 0
buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; °
° e buffer[in] = itemB;
o e in = (in + 1) % BUFLEN;
e in = (in + 1) Y% BUFLEN; °
y

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 2

out = 0

buffer[0] = itemB
buffer[1] = uninitialized

Producer A Producer B
e buffer[in] = itemA; °
o e buffer[in] = itemB;
L4 e in = (in + 1) % BUFLEN;
e in = (in + 1) Y% BUFLEN; °
y

Only specific instructions are guaranteed to be executed atomically (not preempted).

Even within a single line the code can be preempted

Message passing

kernel provides system calls send(1ink, message) and receive(link, &message)
Design decisions

o fixed length or variable length messages

e unidirectional or bidirectional

e means of establishing link:

e By process id (direct communication)
e Parent process creates link, which child can access (e.g. ordinary pipes)
e Via ports or file system (e.g. named pipes)

e synchronous (send/receive blocks until other process calls counterpart) or
asynchronous (continue immediately)

o buffering: zero capacity, bounded capacity, unbounded capacity

Message passing

kernel provides system calls send(1ink, message) and receive(link, &message)

Design decisions

Producer-consumer with message passing:

Producer Consumer
while (true) {

while (true
(=) o item next consumed;

item next produced = produce();

ive(link , &next d);
send(link , next produced); receive(lin next consumed)

consume (next consumed);

; }

Other forms of communication

e TCP/IP connection using sockets

e Remote procedure calls and local procedure calls

We will defer discussion to the networks lecture

	Process Basics
	Process Creation and Termination
	Cooperation and Communication

