
DM510: Processes

Lars Rohwedder

Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html

Today’s lecture

• Chapter 3 of course book

Process Basics

Processes and programs

• Program: executable file, typically stored on hard disk (passive)

• Process: An active instance of a program currently in execution

• There may be multiple processes that all come from the same program

• A process can have multiple threads of execution

! We defer the discussion of threads to next lecture and consider
here only single-threaded processes

Processes and programs

• Program: executable file, typically stored on hard disk (passive)

• Process: An active instance of a program currently in execution

• There may be multiple processes that all come from the same program

• A process can have multiple threads of execution

! We defer the discussion of threads to next lecture and consider
here only single-threaded processes

States of a process

Possible states
• New: just created, but not executing, yet

• Running: currently being executed on CPU

• Waiting: cannot execute until certain event occurs

• Ready: can be executed, but is currently not

• Terminated: process has ended

Data of a process

Memory layout of C program

Internal data of a process (context)

• Current value of CPU registers
including program counter

• The program code/instructions,
called text section

• Stack: function parameters, local
variables, return addresses

• Data section: global variables

• Heap: dynamically allocated
memory

Additional data maintained by kernel (process control block)
• Process status

• Scheduling information: e.g. priority

• Accounting information: elapsed time, CPU time used, etc.

• I/O status information: devices allocated to process, open files, etc.

Data of a process

Memory layout of C program

Internal data of a process (context)
• registers

• text section

• stack

• data section

• heap

Additional data maintained by kernel (process control block)
• Process status

• Scheduling information: e.g. priority

• Accounting information: elapsed time, CPU time used, etc.

• I/O status information: devices allocated to process, open files, etc.

Context switch

• When kernel preempts a process, it
must save its context to be able to
restore it later

• Many context switches can impact
a system’s overall performance

• Some architectures have hardware
support like multiple register sets

Process Creation and Termination

Process tree

• A process can create other processes through system calls

• This leads to a parent-child relationship among processes

Fork system call

• In Unix systems, the fork()
system call is used to create a new
process

• It creates an exact copy of the
caller, including context (data
section, heap, stack, etc.)

• Only difference is value returned by
fork() will be different: zero for
child process, process id of child for
the parent process

• Often system call to exec()
(loader) follows immediately after
forking

fork in C

i n t main () {
pid_t p id ;
p i d = f o r k () ;
i f (p i d < 0) {

f p r i n t f (s t d e r r , " e r r o r ") ;
}
e l s e i f (p i d == 0) {

p r i n t f (" c h i l d −p r o c e s s ") ;
}
e l s e {

p r i n t f (" parent−p r o c e s s ") ;
wa i t (NULL)
p r i n t f (" c h i l d −te rm ina t ed ") ;

}
re tu rn 0 ;

}

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Termination

• A process terminates by using the exit() system call (sometimes implicit when
returning from main() function). It provides a return value that usually indicates
success of failure

• Return code is kept by kernel until collected by parent with wait() system call

• Process that has ended, but return code has not been collected is called zombie

• Process who’s parent terminates without calling wait() is an orphan

• Parent can terminate child using abort() system call

Reasons for aborting a process
• Task performed by process is no longer needed

• Kernel needs to reclaim resources

• Sometimes child process is not allowed to continue when parent terminates

Cooperation and Communication

Cooperation

• Some processes work independently, other cooperate regarding their tasks

• Cooperation requires means of communication provided by the kernel

Example: Chrome Browser
An extreme example of cooperation is Google’s Chrome web browser

• Separate renderer process for each tab + main process +
plug-in processes

• More secure by restricting priveledges of websites

• More reliable since single malfunctioning websites does not
crash entire browser

Cooperation

• Some processes work independently, other cooperate regarding their tasks

• Cooperation requires means of communication provided by the kernel

Example: Chrome Browser
An extreme example of cooperation is Google’s Chrome web browser

• Separate renderer process for each tab + main process +
plug-in processes

• More secure by restricting priveledges of websites

• More reliable since single malfunctioning websites does not
crash entire browser

Communication models

Two main variants of communication: (a) shared memory and (b) message passing

Producer-consumer with shared memory

The following example has one process produce items and the other consume them.
Both processes have access to the following data:

#def ine BUFLEN 10
item b u f f e r [BUFLEN] ;
i n t i n = 0 ;
i n t out = 0 ;

Producer

whi le (t r u e) {
i tem next_produced = produce () ;
whi le (((i n + 1) % BUFLEN) == out)

; /∗ busy wa i t i n g ∗/
b u f f e r [i n] = next_produced ;
i n = (i n + 1) % BUFLEN;

}

Consumer

whi le (t r u e) {
whi le (i n == out)

; /∗ busy wa i t i n g ∗/
i t em next_consumed = b u f f e r [out] ;
out = (out + 1) % BUFLEN;
consume (next_consumed) ;

}

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 0

out = 0

buffer[0] = uninitialized

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

• in = (in + 1) % BUFLEN;

•

•

Producer B

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 0

out = 0

buffer[0] = itemA

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

• in = (in + 1) % BUFLEN;

•

•

Producer B

•

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 0

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

•

• in = (in + 1) % BUFLEN;

•

Producer B

•

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 1

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

•

•

• in = (in + 1) % BUFLEN;

Producer B

•

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 2

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

•

•

• in = (in + 1) % BUFLEN;

Producer B

•

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Race condition in shared memory

Without appropriate measures (future lecture), preemption can lead to errors.
Consider two producers running the previous code simultaneously:

in = 2

out = 0

buffer[0] = itemB

buffer[1] = uninitialized

Producer A

• buffer[in] = itemA;

•

•

• in = (in + 1) % BUFLEN;

Producer B

•

• buffer[in] = itemB;

• in = (in + 1) % BUFLEN;

•

Only specific instructions are guaranteed to be executed atomically (not preempted).
Even within a single line the code can be preempted

Message passing

kernel provides system calls send(link, message) and receive(link, &message)

Design decisions
• fixed length or variable length messages

• unidirectional or bidirectional

• means of establishing link:
• By process id (direct communication)
• Parent process creates link, which child can access (e.g. ordinary pipes)
• Via ports or file system (e.g. named pipes)

• synchronous (send/receive blocks until other process calls counterpart) or
asynchronous (continue immediately)

• buffering: zero capacity, bounded capacity, unbounded capacity

Producer-consumer with message passing:

Producer

whi le (t r u e) {
i tem next_produced = produce () ;
send (l i n k , next_produced) ;

}

Consumer

whi le (t r u e) {
i tem next_consumed ;
r e c e i v e (l i n k , &next_consumed) ;
consume (next_consumed) ;

}

Message passing

kernel provides system calls send(link, message) and receive(link, &message)

Design decisions

Producer-consumer with message passing:

Producer

whi le (t r u e) {
i tem next_produced = produce () ;
send (l i n k , next_produced) ;

}

Consumer

whi le (t r u e) {
i tem next_consumed ;
r e c e i v e (l i n k , &next_consumed) ;
consume (next_consumed) ;

}

Other forms of communication

• TCP/IP connection using sockets

• Remote procedure calls and local procedure calls

We will defer discussion to the networks lecture

	Process Basics
	Process Creation and Termination
	Cooperation and Communication

