
DM510: Threads and Concurrency

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 4 of course book



Multi-threaded process

• Last lecture: several processes (running simultaneously) can coorporate on tasks

• Instead of several processes, often several threads within one process are used

• Reasons of using several threads/processes: continuing during a blocking call or
CPU intensive task (especially for responsiveness), parallelism (multicore processor)

Advantages of threads
• Lower resource overhead

(especially memory)

• Faster thread creation
and thread switches

• Communication via
shared memory simpler
(address space is shared)



Multi-threaded process

• Last lecture: several processes (running simultaneously) can coorporate on tasks

• Instead of several processes, often several threads within one process are used

• Reasons of using several threads/processes: continuing during a blocking call or
CPU intensive task (especially for responsiveness), parallelism (multicore processor)

Advantages of threads
• Lower resource overhead

(especially memory)

• Faster thread creation
and thread switches

• Communication via
shared memory simpler
(address space is shared)



Examples

• A web server responding to HTTP requests:

• A database needs to search a large table for a specific entry. It scans the first
quarter on one thread (running on CPU core 1), the second quarter on another
thread (running on CPU core 2), etc.



Parallelism



Background on parallelism

• Speed at which processors execute instructions (in million cycles per second: MHz)
is no longer increasing due to physical limits

• Performance improvements are now mainly due to parallelism (more CPU cores)

Challenges
• Dividing activities

• Balancing

• Data splitting

• Data dependency

• Testing and debugging

source: Wikipedia



Concurrency and parallelism

Note that concurrency (simultaneous progress on different tasks) is also possible on
single core (via preemptive scheduler):

True parallelism on several cores:



Forms of parallelism

Data parallelism: distribute data to cores performing the same task on each batch

Task parallelism: distribute different tasks to cores, working on same data



Amdahl’s law

Possible speedup due to parallelism (even with many cores) is bounded. It depends
highly on how sequential the program is

Theoretical speedup
Let S be the ratio of sequential
operations to all operations. Then

speedup ≤ 1

S + 1−S
cores

Optimistic estimate that does not
account for communication overhead

Source: Wikipedia



Implementation Details



Types of threads

• Typically, libraries handle internals of thread implementation

• pthreads (POSIX threads) is a widespread API specification implemented in many
libraries, especially on UNIX systems, see demo/course resources

• Conceptionally, two implementations of threads can be distinguished:

Kernel threads
The kernel creates, schedules, terminates
threads like processes, except resources
(e.g. address space) are shared. Thus:

• threads may run on different cores

• other threads can continue when
one is in a blocking system call

User threads
Threads implemented in user mode.
Kernel possibly not aware of threads.

• Limited: process uses single core,
blocking call suspends all threads

• Low on resources, applicable also
to e.g. embedded systems without
OS or with very limited OS



Types of threads

• Typically, libraries handle internals of thread implementation

• pthreads (POSIX threads) is a widespread API specification implemented in many
libraries, especially on UNIX systems, see demo/course resources

• Conceptionally, two implementations of threads can be distinguished:

Kernel threads
The kernel creates, schedules, terminates
threads like processes, except resources
(e.g. address space) are shared. Thus:

• threads may run on different cores

• other threads can continue when
one is in a blocking system call

User threads
Threads implemented in user mode.
Kernel possibly not aware of threads.

• Limited: process uses single core,
blocking call suspends all threads

• Low on resources, applicable also
to e.g. embedded systems without
OS or with very limited OS



User-kernel thread mapping

• In principle one could map user threads (of one process) to a smaller number of
kernel threads in different ways:

Many-to-one One-to-one Many-to-many

user
space

kernel
space

• one-to-one model is by far the most popular and default option

• Possible motivation for not using one-to-one is that kernel threads are more
resource heavy than user threads and we may not have perfect control over
scheduling of kernel threads



Light-weight processes

Two-level

• A variant of many-to-many is two-level model that
allows user process to carefully decide how user
threads are allocated to kernel threads

• This provides fine-grained control, but also requires a
sophisticated kernel interface, usually achieved by
lightweight processes (LWP)

Lightweight process
• A LWP is a wrapper for a kernel thread

• threads are allocated to LWPs by user process

• Kernel informs process via upcall of: user thread
enters blocking call (so that LWP can be used for
other user thread) or thread is no longer blocked



Cancelling threads

• We could cancel a threads execution at whatever point it currently is
(asynchronous cancellation), but this might leave process in an inconsistent
state

• Safer alternative: thread specifies points where it can be cancelled (deferred
cancellation). Then it continues to run until it reaches such a point



Implicit Multi-Threading



Motivation of implicit multi-threading

Optimizing performance and ensuring correctness in multithreaded programs can be
difficult:

• how many kernel threads should be used? Depends on CPU architecture

• How to pass data between different threads? Requires synchronization, which
causes overhead

• In general, writing optimized code for all architectures may be difficult.

At the same time, many similar programs face these challenges.

There are various libraries and frameworks, which take a computational task and
parallelize it almost automatically



Fork-join model

• Structure: when task is large, split
into subtasks, do both in parallel
(fork) and wait for results (join)

• Same can be done recursively



Fork-join model

• Structure: when task is large, split
into subtasks, do both in parallel
(fork) and wait for results (join)

• Same can be done recursively



Fork-join model

• Structure: when task is large, split
into subtasks, do both in parallel
(fork) and wait for results (join)

• Same can be done recursively



OpenMP

• Library for parallelizing C/C++ programs

• Parallelization of for-loops requires only minimal changes: adding “#pragma omp
parallel for” before the loop

• See demo/course resources



Other parallelization

Single-instruction-multiple-data (SIMD)

• Modern processors come with special registers that can hold vectors, e.g. 4
integers (of 4 bytes each)

• SIMD instructions can perform parallel operations on vectors.

• They perform data-parallelism

• Note: this is not threading or an operating system aspect

General-purpose graphics processors (GPGPU)

• Graphic processors come with very many, sometimes 1000s, of (very simple) cores

• These traditionally perform computer graphics tasks, but are being used
increasingly for other purposes (e.g. linear algebra) as well

• Accessed as a device via driver

• Not easy to program


	Parallelism
	Implementation Details
	Implicit Multi-Threading

