
DM510: CPU Scheduling

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating System
Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 5 of course book



Overview



Setting

• Typically many processes compete for computation time on CPU
• Processes ready to run wait in a queue
• Key question: How does the kernel decide which process to run?



Scheduling criteria

For choosing a scheduling strategy, we can optimize several criteria that are sometimes
contradictory (i.e., we might to decide what is more important)

• CPU utilization: Executing as many process instructions as possible

• Throughput: Complete as many processes/tasks per time unit as possible

• Turnaround time: Minimize time to complete a particular process

• Waiting time: Minimize time a process waits in ready queue

• Response time: Minimize time between incoming request and first response

• Fairness: Make sure that every process/task gets a fair share of CPU time and no
task “starves”, i.e., never completes

• Efficiency of algorithm: Scheduling algorithm itself should not create significant
latency/overhead



CPU-I/O cycle

• Typically, processes do not want CPU all the time

• They have CPU bursts, in which they execute
instructions on the CPU, then need to waits for
I/O (I/O burst)

• Typical distribution: many short CPU bursts, very
few long ones



CPU-I/O cycle

• Typically, processes do not want CPU all the time

• They have CPU bursts, in which they execute
instructions on the CPU, then need to waits for
I/O (I/O burst)

• Typical distribution: many short CPU bursts, very
few long ones



Example of CPU-I/O and different measures

process created

wait in
ready queue

response,
process terminated

CPU
burst

turnaround
time

response
time

waiting
time



Longer example of CPU-I/O and different measures

process created

wait in
ready queue

response

wait for I/OCPU
burst

wait in
ready queue

CPU
burst

second response,
process terminated

turnaround
time

response
time

waiting
time

+



Preemption

• A scheduler is non-preemptive if it allows processes to continue running until
they voluntarily suspend (e.g., because of an I/O burst)

• A scheduler that possibly preempts (interrupts) a process currently running on
CPU is called preemptive

• Preemption is used in all major operating systems, but requires careful
programming practices to avoid race conditions



Algorithms



First-come-first-serve (FCFS)

• Schedule processes in the order
they arrive

• Suffers from convoy effect: long
process delays many small
processes

Example

Example 2



First-come-first-serve (FCFS)

• Schedule processes in the order
they arrive

• Suffers from convoy effect: long
process delays many small
processes

Example

process burst time waiting time
P2 3 24 0
P3 3 27 3
P1 24 0 6
average 3

Example 2



First-come-first-serve (FCFS)

• Schedule processes in the order
they arrive

• Suffers from convoy effect: long
process delays many small
processes

Example

Example 2

process burst time waiting time
P1 3 0
P2 24 24
P3 3 27
average 17



Shortest-job-first (SJF)

• Schedule processes increasingly by
burst time

• Minimizes average waiting time

• How do we know the burst time in
advance? Either provided by process
or via estimate

Example

process burst time waiting time
P1 6 3
P2 8 16
P3 7 9
P4 3 0
average 7



Shortest-job-first (SJF)

• Schedule processes increasingly by
burst time

• Minimizes average waiting time

• How do we know the burst time in
advance? Either provided by process
or via estimate

Example

process burst time waiting time
P1 6 3
P2 8 16
P3 7 9
P4 3 0
average 7



Shortest-job-first (SJF)

• Schedule processes increasingly by
burst time

• Minimizes average waiting time

• How do we know the burst time in
advance? Either provided by process
or via estimate

Example

process burst time waiting time
P1 6 3
P2 8 16
P3 7 9
P4 3 0
average 7



Estimation of burst time (e.g. for SJF)

• Guess next burst time based on previous ones from same process

• Can use different algorithms for prediction

Example: exponential smoothing
Choose appropriate value α ∈ [0, 1]

and define guess

τn+1 = αtn + (1− α)τn

For typical choice of α = 1/2 this
simplifies to

τn+1 =
1

2
tn +

1

4
tn−1 +

1

8
tn−2 + · · ·



Estimation of burst time (e.g. for SJF)

• Guess next burst time based on previous ones from same process

• Can use different algorithms for prediction

Example: exponential smoothing
Choose appropriate value α ∈ [0, 1]

and define guess

τn+1 = αtn + (1− α)τn

For typical choice of α = 1/2 this
simplifies to

τn+1 =
1

2
tn +

1

4
tn−1 +

1

8
tn−2 + · · ·



Shortest-remaining-time (SRT)

• Preemptive version of SJF:
schedule the process with
shortest (remaining) burst time,
preempting current process if
shorter one arrives

Example

process arrival burst waiting
time time time

P1 0 8 10-1
P2 1 4 1-1
P3 2 9 17-2
P4 3 5 5-3
average 6.5



Shortest-remaining-time (SRT)

• Preemptive version of SJF:
schedule the process with
shortest (remaining) burst time,
preempting current process if
shorter one arrives

Example

process arrival burst waiting
time time time

P1 0 8 10-1
P2 1 4 1-1
P3 2 9 17-2
P4 3 5 5-3
average 6.5



Round-robin (RR)

• Choose time quantum q

(typically 10-100ms)

• Preempt a process if it has run
continuously for q time.
Afterwards, put process at end
of queue

• Low values of q would lead to
high overhead due to
context-switches

Example

q = 4

process waiting time
P1 24
P2 3
P3 3



Round-robin (RR)

• Choose time quantum q

(typically 10-100ms)

• Preempt a process if it has run
continuously for q time.
Afterwards, put process at end
of queue

• Low values of q would lead to
high overhead due to
context-switches

Example

q = 4

process waiting time
P1 24
P2 3
P3 3



Priority scheduling

• Each process has priority
(integer number)

• Kernel schedules process with
highest priority (smallest
number), either preemptively or
non-preemptively

• Can lead to starvation . . .

Solution: aging, ie., priority
increases over time

Example

process waiting time priority
P1 24 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2



Priority scheduling

• Each process has priority
(integer number)

• Kernel schedules process with
highest priority (smallest
number), either preemptively or
non-preemptively

• Can lead to starvation . . .

Solution: aging, ie., priority
increases over time

Example

process waiting time priority
P1 24 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2



Priority scheduling with round-robin

• Run process with highest priority

• If multiple processes have
highest priority, do round robin
on them

Example

q = 2

process waiting time priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P4 3 3



Priority scheduling with round-robin

• Run process with highest priority

• If multiple processes have
highest priority, do round robin
on them

Example

q = 2

process waiting time priority
P1 4 3
P2 5 2
P3 8 2
P4 7 1
P4 3 3



Multilevel queue (e.g. for priority scheduling)

• To implement priority scheduling, use separate queue for each priority level

• Scheduler runs next task from first non-empty queue

• Scheduler can decide different algorithm (e.g. round-robin) for each queue

e.g. realtime processes

e.g. system processes

e.g. interactive processes

e.g. batch processes

Multilevel feedback queue
• Extension where process can be

moved between queues
(upgraded or demoted)

• Can be used e.g. to implement
aging



Multilevel queue (e.g. for priority scheduling)

• To implement priority scheduling, use separate queue for each priority level

• Scheduler runs next task from first non-empty queue

• Scheduler can decide different algorithm (e.g. round-robin) for each queue

e.g. realtime processes

e.g. system processes

e.g. interactive processes

e.g. batch processes

Multilevel feedback queue
• Extension where process can be

moved between queues
(upgraded or demoted)

• Can be used e.g. to implement
aging



Example of multilevel feedback queue

Queues:

• Q0: RR with q = 8ms

• Q1: RR with q = 16ms

• Q2: FCFS

Scheduling:

• New processes go to Q0

• If process running in Q0 needs to be
preempted (does not finish CPU burst in
8ms), move process to Q1

• If process running in Q1 needs to be
preempted (does not finish CPU burst in
16ms), move process to Q2



Multi-Core Scheduling



Setting



Scheduling on multi-core systems

• Cores can share queues or have separate ones

• If core has its own cache, may want to keep threads on same core. Hard affinity:
Thread is guaranteed to run only on specific core. Soft affinity: attempted

• May need to balance loads. Push migration: core gives work to other cores if
overloaded, pull migration: core takes work from other cores if underloaded

• Multi-threading/hyper-threading: Some processors can run several threads
(with their own register set, etc.) interleaved on one core, executes one thread
while other is in memory stall, i.e., waiting for RAM access. To system, looks like
more cores



Scheduling on multi-core systems

• Cores can share queues or have separate ones
• If core has its own cache, may want to keep threads on same core. Hard affinity:

Thread is guaranteed to run only on specific core. Soft affinity: attempted

• May need to balance loads. Push migration: core gives work to other cores if
overloaded, pull migration: core takes work from other cores if underloaded

• Multi-threading/hyper-threading: Some processors can run several threads
(with their own register set, etc.) interleaved on one core, executes one thread
while other is in memory stall, i.e., waiting for RAM access. To system, looks like
more cores



Scheduling on multi-core systems

• Cores can share queues or have separate ones
• If core has its own cache, may want to keep threads on same core. Hard affinity:

Thread is guaranteed to run only on specific core. Soft affinity: attempted
• May need to balance loads. Push migration: core gives work to other cores if

overloaded, pull migration: core takes work from other cores if underloaded

• Multi-threading/hyper-threading: Some processors can run several threads
(with their own register set, etc.) interleaved on one core, executes one thread
while other is in memory stall, i.e., waiting for RAM access. To system, looks like
more cores



Scheduling on multi-core systems

• Cores can share queues or have separate ones
• If core has its own cache, may want to keep threads on same core. Hard affinity:

Thread is guaranteed to run only on specific core. Soft affinity: attempted
• May need to balance loads. Push migration: core gives work to other cores if

overloaded, pull migration: core takes work from other cores if underloaded
• Multi-threading/hyper-threading: Some processors can run several threads

(with their own register set, etc.) interleaved on one core, executes one thread
while other is in memory stall, i.e., waiting for RAM access. To system, looks like
more cores



Real-time Scheduling



Setting

• Soft real-time system: missing deadlines is tolerated in extreme cases

• Hard real-time system: tasks guaranteed to meet their deadline (fixed bound on
event latency)



Latency

Interrupt latency
Time between interrupt appearing and
interrupt handler running

Dispatch latency
• Preempt ongoing task and schedule

high priority process

• Possibly release resources needed

High priority for real-time task ⇝ low, predictable latency (soft real-time)



Periodic tasks

To design hard real-time systems, software must follow strict specification on their CPU
usage: a process emits tasks periodically.

• period p: at which rate does the process emit tasks
• deadline d: how long after each task is emitted does it need to be completed
• processing time t: how long does each task need on CPU
• hard real-time guarantees can be proven, assuming low enough system load and all

components follow specification



Evaluating Schedulers



Evaluation

• Can be via mathematical models (e.g. queueing theory), but often unrealistic

• More practical: simulations on data from traces of live system


	Overview
	Algorithms
	Multi-Core Scheduling
	Real-time Scheduling
	Evaluating Schedulers

