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Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 6+7 of course book
• Due to overlap with Concurrent Programming course, we focus on system
view



The Problem



Race condition

• Concurrency / parallelism can cause race conditions: different (unintended)
behavior depending on timing of process execution and preemption

• Such errors are extremely difficult to reproduce and debug
• Can be issue in both kernel code and user code

Example
• Two processes might execute
fork() at similar times

• Without proper mechanisms, they
could obtain same pid for child

• Modern operating systems ensure
system calls are thread-safe (no
race conditions)



High-Level Mechanisms



Critical section

• Each program defines “critical
sections” during which it works
on shared memory

. . .
e n t e r _ c r i t i c a l _ s e c t i on ( )

perform some operat ion on shared memory

e x i t _ c r i t i c a l _ s e c t i o n ( )
. . .

Properties
• Mutual exclusion: only one process is in a critical section at any time
• Progress: processes do not wait indefinitely while there is no process in a
critical section

• Bounded waiting: for a process waiting to enter critical section, number of
other processes that can enter before it is bounded



Mutex

A mutex (“mutual exclusion”) is an object that has two operations:

• aquire()
• release()

A mutex has a binary value B (initialized with true). The operations behave as
follows

aquire()

while ( ! B )
; /* wait */

B = fa l s e ;

release()

B = true ;



Semaphores

More powerful than mutex. Again two operations:

• wait()
• signal()

A semaphore has a counter S . The operations behave as follows

wait()

while ( S <= 0)
; /* wait */

S − − ;

signal()

S + + ;



Semaphore example: bounded buffer

(From previous lecture on process communication) given: buffer holding BUFLEN
elements, producers that add elements and consumers that remove elements.

item buf fe r [ BUFLEN ] ;
i n t in = 0 ;
i n t out = 0 ;

Producer
while ( t rue ) {
item next_produced = produce ( ) ;
wai t (&empty ) ;
wai t (&mutex ) ;
bu f fe r [ in ] = next_produced ;
in = ( in + 1 ) % BUFLEN ;
s i gna l (&mutex ) ;
s i gna l (& f u l l ) ;

}

• semaphore mutex initially 1

• semaphore full initially 0

• semaphore empty initially BUFLEN

Consumer
while ( t rue ) {
wai t (& f u l l ) ;
wai t (&mutex ) ;
item next_consumed = buf fe r [ out ] ;
out = ( out + 1 ) % BUFLEN ;
consume ( next_consumed ) ;
s i gna l (&mutex ) ;
s i gna l (&empty ) ;

}



Monitors

• An object together with data
(variables) and operations

• Only once thread at a time can
execute an operation



Implementation Details of
Synchronization



Disabling interrupts

• Simple way to implement critical sections (on single-core machines): disable
interrupts when entering critical section, enable when leaving

• Process will finish critical section before anything else is performed

Problems
• When disabling interrupts for a longer duration: computer system not
responsive; frequent timer interrupts are used to update system clock, which
no longer happens; …

• On multi-core systems another process may still run in parallel, making this
approach insufficient



Atomic instructions

• An operation on shared memory is atomic if at any time from the perspective
of another thread, it is either not performed at all or completely performed

• Processor architectures typically
implement basic memory
operations (load and store)
atomically

• Special sophisticated atomic
instructions are often available
(architecture dependent)

• <stdatomic.h> for portable C
code

• Slower than non-atomic variant

Typical atomic instructions
• increment(int* arg): increase *arg by 1

• exchange(int* obj, int newval):
set *obj = newval and return previous
value of *obj

• compare_and_swap(int* obj, int
oldval, int newval):
if *obj == oldval, set *obj = newval
and return true, otherwise return false

• compare_and_exchange(int* obj,
int* oldval, int newval):
if *obj == *oldval, set *obj = newval
and return true, otherwise *oldval =
*obj and return false



Spinlocks

Busy waiting: thread keeps running (e.g. polling the status of a mutex) while it is
blocked

Naive implementation of aquire()

while ( ! B )
; /* wait */

B = fa l s e ;

Prone to race conditions!

Correct implementation of aquire()

while ( ! compare_and_swap (B , true , f a l s e ) )
; /* wait */

• Although busy waiting seems wasteful at first, it is perfectly suitable in many
situations, especially when it is unlikely that other process holds lock

• Implementation above might not guarantee bounded waiting



Bounded waiting with spinlocks

bool wa i t ing [ n ] ;
bool B ;

/* thread i */
while ( t rue ) {

wa i t ing [ i ] = t rue ;
while ( wa i t ing [ i ] && ! compare_and_swap(&B , fa lse , t rue ) ; )

;
wa i t ing [ i ] = f a l s e ;
/* c r i t i c a l sec t ion */
j = ( i + 1 ) % n ;
while ( ( j ! = i ) && ! wa i t ing [ j ] )

j = ( j + 1 ) % n ;
i f ( j == i )

B = f a l s e ;
else

wai t ing [ j ] = f a l s e ;
/* remainder sec t ion */

}



Memory barriers

Busy waiting also without sophisticated instructions (e.g. compare_and_swap())
is possible, see e.g. Dekker’s algorithm in exercises. But this is dangerous:

Code

bool f l a g = f a l s e ;
i n t x = 0 ;

/* Thread 1 */
while ( ! f l a g )

;
/* expected output : 100 */
p r i n t x ;

/* Thread 2 */
x = 100 ;
f l a g = true ;
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Synchronization without busy waiting

In some situations (e.g. locks are kept for a long time or single-core processor)
busy waiting is not a sensible option.

Alternative: use system calls to scheduler

• block(): ask kernel scheduler to not execute process anymore by putting it
into a waiting queue

• wakeup(): move process from waiting queue to ready queue

Disadvantages
• High overhead (user-kernel mode switch, context switches, etc.)



Summary

Disabling interrupts
Bad for: multi-core systems, long critical sections

Spinlocks
Bad for: single-core systems, long critical sections

Scheduler requests (block/wakeup)
Bad for: short critical sections



Deadlocks



Dining philosophers

• 5 philosophers alternatingly think and eat
• To eat they need to pick up their left and right
chopstick (one at a time)

• Chopsticks (implemented as mutexes) are shared
with the neighbors

/* Algorithm fo r phi losopher i */
while ( t rue ) {

aquire (& chopst ick [ i ] ) ;
aquire (& chopst ick [ ( i + 1 )% 5 ] ) ;
eat ( ) ;
re lease (& chopst ick [ i ] ) ;
re lease (& chopst ick [ ( i + 1 )% 5 ] ) ;
th ink ( ) ;

}

This code has a problem. What is it? (more next lecture)
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