
DM510: Deadlocks

Lars Rohwedder

Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html

Today’s lecture

• Chapter 8 of course book

The Problem

Example: dining philosophers
• 5 philosophers alternatingly think and eat
• To eat they need to pick up their left and right chopstick (one at a time)
• Chopsticks (implemented as mutexes) are shared with the neighbors

/* Algorithm fo r phi losopher i */
while (t rue) {

aquire (& chopst ick [i]) ;
aquire (& chopst ick [(i + 1)% 5]) ;
eat () ;
re lease (& chopst ick [i]) ;
re lease (& chopst ick [(i + 1)% 5]) ;
th ink () ;

}

Deadlock
If each philosopher grabs the left chopstick before their neighbor grabs the right
one, then they are stuck in a deadlock!

Example: dining philosophers
• 5 philosophers alternatingly think and eat
• To eat they need to pick up their left and right chopstick (one at a time)
• Chopsticks (implemented as mutexes) are shared with the neighbors

/* Algorithm fo r phi losopher i */
while (t rue) {

aquire (& chopst ick [i]) ;
aquire (& chopst ick [(i + 1)% 5]) ;
eat () ;
re lease (& chopst ick [i]) ;
re lease (& chopst ick [(i + 1)% 5]) ;
th ink () ;

}

Deadlock
If each philosopher grabs the left chopstick before their neighbor grabs the right
one, then they are stuck in a deadlock!

Formal model

• Deadlocks can occur with mutexes (last lecture), files, limited resources, etc.
• Since the problem is the same, we consider it in the following abstract model

Resources
• R1,R2, . . . ,Rm : resources with one or more instances
• Mutual exclusion: only one thread can hold the same
instance at a time

Threads
• T1,T2, . . . ,Tn : threads of the system

Edges
• request edge: from thread to resource
• assignment edge: from resource instance to thread

Deadlock characterization

Conditions for deadlock
• Mutual exclusion resource instances are held by
one thread at a time

• Hold and wait: thread holding one resource
instance waits for other resources

• No preemption: a resource can only be released
voluntarily

• Circular wait: Threads T1, . . . ,Tn such that Ti

waits for a resource that Ti+1 (or T1 if i = n)
holds for each i = 1, 2, . . . ,n.

• Conditions necessary (no cycle⇒ no deadlock)

• But not sufficient (cycle⇒ maybe deadlock)

Cycle with deadlock

Deadlock characterization

Conditions for deadlock
• Mutual exclusion resource instances are held by
one thread at a time

• Hold and wait: thread holding one resource
instance waits for other resources

• No preemption: a resource can only be released
voluntarily

• Circular wait: Threads T1, . . . ,Tn such that Ti

waits for a resource that Ti+1 (or T1 if i = n)
holds for each i = 1, 2, . . . ,n.

• Conditions necessary (no cycle⇒ no deadlock)
• But not sufficient (cycle⇒ maybe deadlock)

Cycle without
deadlock

Handling deadlocks

• Ensure that system never enters deadlock state by deadlock prevention or
deadlock avoidance

• Allow system to enter deadlock state and recover
• Ignore that there can be deadlocks

Deadlock Prevention

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
• Make resource sharable if
possible, e.g., read-only files

Hold and wait
• Make threads request all
resources before execution

• Make threads request resources
only when none are allocated

• Disadvantages of the above:
lower resource utilization,
possible starvation

No preemption
• Thread waiting for some resource
releases the ones it is currently
holding

• Thread is woken up once the new
resource and the previously
released ones are allocated to it

Circular wait
• Define total order on resources
and require threads to request
resources in that order

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
• Make resource sharable if
possible, e.g., read-only files

Hold and wait
• Make threads request all
resources before execution

• Make threads request resources
only when none are allocated

• Disadvantages of the above:
lower resource utilization,
possible starvation

No preemption
• Thread waiting for some resource
releases the ones it is currently
holding

• Thread is woken up once the new
resource and the previously
released ones are allocated to it

Circular wait
• Define total order on resources
and require threads to request
resources in that order

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
• Make resource sharable if
possible, e.g., read-only files

Hold and wait
• Make threads request all
resources before execution

• Make threads request resources
only when none are allocated

• Disadvantages of the above:
lower resource utilization,
possible starvation

No preemption
• Thread waiting for some resource
releases the ones it is currently
holding

• Thread is woken up once the new
resource and the previously
released ones are allocated to it

Circular wait
• Define total order on resources
and require threads to request
resources in that order

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
• Make resource sharable if
possible, e.g., read-only files

Hold and wait
• Make threads request all
resources before execution

• Make threads request resources
only when none are allocated

• Disadvantages of the above:
lower resource utilization,
possible starvation

No preemption
• Thread waiting for some resource
releases the ones it is currently
holding

• Thread is woken up once the new
resource and the previously
released ones are allocated to it

Circular wait
• Define total order on resources
and require threads to request
resources in that order

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
• Make resource sharable if
possible, e.g., read-only files

Hold and wait
• Make threads request all
resources before execution

• Make threads request resources
only when none are allocated

• Disadvantages of the above:
lower resource utilization,
possible starvation

No preemption
• Thread waiting for some resource
releases the ones it is currently
holding

• Thread is woken up once the new
resource and the previously
released ones are allocated to it

Circular wait
• Define total order on resources
and require threads to request
resources in that order

Example: total order

1
2

34

5

Solution for dining philosophers
/* philosopher i = 1 , 2 , 3 , 4 */
while (t rue) {

aquire (& chopst ick [i]) ;
aquire (& chopst ick [i + 1]) ;
eat () ;
re lease (& chopst ick [i]) ;
re lease (& chopst ick [i + 1]) ;
th ink () ;

}
/* f o r phi losopher 5 */
while (t rue) {

aquire (& chopst ick [1]) ;
aquire (& chopst ick [5]) ;
eat () ;
re lease (& chopst ick [1]) ;
re lease (& chopst ick [5]) ;
th ink () ;

}

Deadlock Avoidance

Approach

• Assumption: we know the resources (and maximum no. instances) a thread
can request and no new threads arrive

• Algorithm grants requested resources to threads in such a way that unsafe
state (= potential deadlock) never reached

Safe state
• Threads can be reordered as (T1,T2, . . . ,Tn)

such that for each thread Ti the resource that
T1,T2, . . . ,Ti−1 hold suffice to satisfy Ti ’s
additional resource need

• No deadlock because T1 does not wait; once
T1 is done, T2 does not wait; once T1,T2 are
done, T3 does not wait; etc.

Detecting (un-)safe states

Input
• avail ∈ Zm

≥0: no. instances of
resource not allocated

• max ∈ Zn×m
≥0 : maximum no.

instances of resource a thread
might request

• alloc ∈ Zn×m
≥0 : no. instances of

resource allocated to thread

Safe state detection

1. initialize work ∈ Zm
≥0 with

work[j] = avail[j]

2. initialize need ∈ Zn×m
≥0 with

need[i, j] = max[i, j]− alloc[i, j]

3. initialize finish ∈ Zn
≥0 with

finish[i] = false

4. while true
4.1 let i ∈ {1, 2, . . . ,n} with

finish[i] = false and

need[i, j] ≤ work[j] ∀j

4.2 if no such i exists: break
4.3 finish[i]← true
4.4 for j ∈ {1, 2, . . . ,m} :

work[j]← work[j] + alloc[i, j]

5. Result: if finish[i] = false for some thread Ti
then state is unsafe, otherwise safe

Banker’s algorithm for deadlock avoidance

• Banker’s algorithm tests if request by a thread Ti can be granted
• If Ti has to wait, try again after resources have been released

Input
• avail ∈ Zm

≥0: no. instances of
resource not allocated

• max ∈ Zn×m
≥0 : maximum no.

instances of resource a thread
might request

• alloc ∈ Zn×m
≥0 : no. instances of

resource allocated to thread
• Thread Ti and request req ∈ Zm

≥0
for additional resources

Banker’s algorithm
1. if alloc[i, j] + req[j] > max[i, j] for some j:
raise runtime error

2. if req[j] > avail[j] for some j: make Ti wait

3. store current state in S

4. for each resource Rj :
/* give requested resources to Ti */

avail[j]← avail[j]− req[j]

alloc[i, j]← alloc[i, j] + req[j]

5. if unsafe state detected: restore state S and
make Ti wait

Deadlock Recovery

Deadlock detection

Input
• avail ∈ Zm

≥0: no. instances of
resource not allocated

• alloc ∈ Zn×m
≥0 : no. instances of

resource allocated to a thread
• req ∈ Zn×m

≥0 : no. additional
instances of resource requested
by a thread

• Periodically check for deadlock
• Algorithm (right) requires

O(mn2) operations

Algorithm

1. let work ∈ Zm
≥0 with

work[j] = avail[j]

2. let finish ∈ Zn
≥0 with

finish[i] =
{

true if alloc[i, j] = 0 ∀j
false otherwise.

3. while true
3.1 let i ∈ {1, 2, . . . ,n} with

finish[i] = false and

req[i, j] ≤ work[j] ∀j

3.2 if no such i exists: break
3.3 finish[i]← true
3.4 for j ∈ {1, 2, . . . ,m} :

work[j]← work[j] + alloc[i, j]

4. Result: every thread i with finish[i] = false is
in deadlock

Recovering: process termination

Terminate threads (processes) to remove deadlock. Variants:

• Abort all threads (processes) in a deadlock
• Abort one thread (process) at a time until deadlock is removed. In which
order? Examples:

• By priority
• By how long the thread has been computing or how much longer it needs
• By resource usage
• By resource requirements to complete
• By number of threads that need to be terminated

Recovering: resource preemption

• pick a victim thread
• roll back thread to safe state and restart from there
• can lead to starvation if same thread is picked over and over again, to avoid:
include number of times picked in victim selection

	The Problem
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Recovery

