DM510: Deadlocks

Lars Rohwedder

ghegdecloesg e
¢ v gme v Fm i ¢

Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/0S10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html

Today'’s lecture

- Chapter 8 of course book

The Problem

Example: dining philosophers
- 5 philosophers alternatingly think and eat
- To eat they need to pick up their left and right chopstick (one at a time)
- Chopsticks (implemented as mutexes) are shared with the neighbors

/% Algorithm for philosopher i x/

while (true) { @
aquire(&chopstick[i]);
aquire(&chopstick [(i+1)%5]);

eat ();
release(&chopstick[i]); @
release(&chopstick [(i+1)%5]);

think ();
| B2

59

Example: dining philosophers
- 5 philosophers alternatingly think and eat
- To eat they need to pick up their left and right chopstick (one at a time)
- Chopsticks (implemented as mutexes) are shared with the neighbors

/% Algorithm for philosopher i x/

while (true) {
aquire(&chopstick[i]);
aquire(&chopstick [(i+1)%5]);
eat ();
release(&chopstick[i]);
release(&chopstick [(i+1)%5]);
think ();

}

Deadlock

If each philosopher grabs the left chopstick before their neighbor grabs the right
one, then they are stuck in a deadlock!

Formal model

- Deadlocks can occur with mutexes (last lecture), files, limited resources, etc.
- Since the problem is the same, we consider it in the following abstract model

Resources

* Ry, R, ..., R, resources with one or more instances R, R,

- Mutual exclusion: only one thread can hold the same “ “

instance at a time) & W »

Threads

« T1,Ts, ..., Ty threads of the system) 7
Edges Re :

Ra

- request edge: from thread to resource

- assignment edge: from resource instance to thread

Deadlock characterization

Conditions for deadlock R, R,

- Mutual exclusion resource instances are held by ° N
one thread at a time

- Hold and wait: thread holding one resource
instance waits for other resources

- No preemption: a resource can only be released

voluntarily \./
- Circular wait: Threads Ty, ..., T, such that T; * :
waits for a resource that Ty, (or Ty if i = n) R, e
holds for each i =1,2,...,n. R,

» Cycle with deadlock
- Conditions necessary (no cycle = no deadlock)

Deadlock characterization

Conditions for deadlock

- Mutual exclusion resource instances are held by R, /@

one thread at a time o

- Hold and wait: thread holding one resource A
instance waits for other resources

- No preemption: a resource can only be released

voluntarily \72
- Circular wait: Threads T1,..., T}, such that T; *—
waits for a resource that Ty, (or Ty if i = n)
holds for each i =1,2,...,n. Cycle without
’ deadlock

- Conditions necessary (no cycle = no deadlock)

- But not sufficient (cycle = maybe deadlock)

Handling deadlocks

- Ensure that system never enters deadlock state by deadlock prevention or

deadlock avoidance
- Allow system to enter deadlock state and recover

- lgnore that there can be deadlocks

Deadlock Prevention

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
- Make resource sharable if
possible, e.g., read-only files

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
- Make resource sharable if
possible, e.g., read-only files

Hold and wait
- Make threads request all
resources before execution

- Make threads request resources
only when none are allocated

- Disadvantages of the above:
lower resource utilization,
possible starvation

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
- Make resource sharable if
possible, e.g., read-only files

No preemption
- Thread waiting for some resource

releases the ones it is currently
holding

Hold and wait
- Make threads request all
resources before execution

- Thread is woken up once the new
resource and the previously
released ones are allocated to it |

- Make threads request resources
only when none are allocated

- Disadvantages of the above:
lower resource utilization,
possible starvation

Deadlock prevention

It is enough to remove one of the four necessary conditions for a deadlock

Mutual exclusion
- Make resource sharable if
possible, e.g., read-only files

No preemption
- Thread waiting for some resource

releases the ones it is currently
holding

Hold and wait
- Make threads request all
resources before execution

- Thread is woken up once the new
resource and the previously
released ones are allocated to it |

- Make threads request resources

only when none are allocated Circular wait
- Disadvantages of the above: - Define total order on resources
lower resource utilization, and require threads to request

possible starvation resources in that order

Example: total order

Solution for dining philosophers
/* philosopher i=1,2,3,4 %/
while (true) {

}

aquire(&chopstick[i]);
aquire(&chopstick[i+1]);
eat ();
release(&chopstick[i]);
release(&chopstick[i+1]);
think ();

/% for philosopher 5 %/
while (true) {

aquire(&chopstick [1]);
aquire(&chopstick [5]);
eat ();
release(&chopstick[1]);
release(&chopstick [5]);
think ();

Deadlock Avoidance

Approach

- Assumption: we know the resources (and maximum no. instances) a thread
can request and no new threads arrive

- Algorithm grants requested resources to threads in such a way that unsafe
state (= potential deadlock) never reached

Safe state
- Threads can be reordered as (71, To, ..., Ty) deadlock

such that for each thread 7j; the resource that
T1, Ty, ..., T;_1 hold suffice to satisfy T;'s ﬂ

additional resource need

unsafe

- No deadlock because Ty does not wait; once
T, is done, Ty does not wait; once Ty, Ts are
done, T3 does not wait; etc.

Detecting (un-)safe states

2. initialize need € Z%X™ with
Input >0

. . need|i, j| = max[i, j] — allocli, j
- avail € ZZ,: no. instances of i i [0

resource not auocated 3. initialize finish € Zgo with

finish[¢] = false

-+ max € ZZ§™: maximum no.
instances of resource a thread 4. while true

might request 41 letie{1,2,...,n} with
finish[i] = false and

. nXm. H
alloc € ZZ;™: no. instances of need(i,] < work[j] v

resource allocated to thread

v 4.2 if nosuch 4 exists: break
4.3 finish[i] < true

Safe state detection 44 forje{1,2,...,m}:
work[j] «— work[j] + alloc][z, 7]

1. initialize work € 22, with :
= 5. Result: if finish[:] = false for some thread T;

work[j] = availlj] then state is unsafe, otherwise safe

Banker’s algorithm for deadlock avoidance

- Banker's algorithm tests if request by a thread T; can be granted

- If Ty has to wait, try again after resources have been released

Input

- avail € ZZ,: no. instances of
resource not allocated

- max € ZZ;™: maximum no.
instances of resource a thread
might request

- alloc € ZZ§™: no. instances of
resource allocated to thread

* Thread T; and request req € ZZ,
for additional resources

Banker’s algorithm

1.

if alloc[, j] + req[j] > max][i, j] for some j:
raise runtime error

if req[j] > avail[j] for some j: make T; wait
store current state in .S

for each resource Rj:
/* give requested resources to T; */

avail[j] < avail[j] — req|[j]
alloc|7, j| < alloclé, j] + req[j]

if unsafe state detected: restore state S and
make T; wait

Deadlock Recovery

Deadlock detection

Algorithm
Input 1. letwork € Z’Z"’O with
- ; . work[j] = avail[j]
- avail € ZZ,: no. instances of
resource not allocated 2. letfinish € 2%, with
- alloc e Zgém: no. instances of finish(i] = true Ifalloc[Az,j] =0Vj
= false otherwise.

resource allocated to a thread
3. while true

nxm. 41
* req € Z5;,™: no. additional 31 leti € {1,2,...,n} with

instances of resource requested finish[4] = false and
by a thread req[4, j] < worklj] Vj
V.
3.2 if nosuch 4 exists: break
- Periodically check for deadlock 33 finish[d] « true
))) 34 forje{1,2,...,m}:

- Algorithm (right) requires workl[j] + work[j] + alloc[s, j]

O(an) operations 4. Result: every thread 7 with finish[s] = false is

in deadlock

Recovering: process termination

Terminate threads (processes) to remove deadlock. Variants:

- Abort all threads (processes) in a deadlock

- Abort one thread (process) at a time until deadlock is removed. In which
order? Examples:
- By priority
- By how long the thread has been computing or how much longer it needs
- By resource usage
- By resource requirements to complete
- By number of threads that need to be terminated

Recovering: resource preemption

- pick a victim thread
- roll back thread to safe state and restart from there

- can lead to starvation if same thread is picked over and over again, to avoid:
include number of times picked in victim selection

	The Problem
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Recovery

