
DM510: Main Memory

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 9 of course book



Overview



Role of main memory

• Apart from registers, only storage that CPU can directly access

Accessing main memory
• Load or store instruction, for
address and possibly data

• Slow compared to instructions
only on registers. Memory stall:
CPU needs to wait for memory
access before continuing

• Recently used memory addresses
in cache for faster access



Logical (virtual) and physical addresses

• CPU’s instructions load and store to logical (also known as virtual)
addresses. They are different from physical addresses that memory unit sees

• Memory-management
unit translates (in
hardware) logical to
physical addresses

• Many variants of
logical-to-physical
translation possible

Purpose of logical addresses
• Protect memory of processes from each other
• Great flexibility for allocating physical memory to processes



Naive Approach: Contiguous
Allocation



Contiguous allocation

• Each process receives contiguous section of
physical memory addresses

• Before executing user code, kernel sets the
following registers (access priviledged):
relocation register: first physical address
(base) for process
limit register: length of section

• phyical address =
relocation register +
logical address



Allocation details

• Need for variable size partition of memory: cannot afford to give every
process the same (maximum) amount of memory

• Since new processes start and terminate, holes of free memory occur

• Which section of memory to allocate to new process?
• First-fit: First hole that is big enough
• Best-fit: Smallest hole that is big enough
• Worst-fit: Biggest hole that is big enough

• Empirically, First-fit and best-fit perform better than worst-fit



Fragmentation

• External fragmentation: enough free space, but not contiguous
• Internal fragmentation: more space allocated to processes than requested
(e.g., rounded up to power of 2)

• Rule of thumb (50% rule): for N blocks allocated, 0.5N blocks are lost due to
fragmentation

• Compaction: shuffe around memory to make free memory contiguous
(typically slow)



Paging



Pages and frames

• Logical memory is split into pages
of specific size, e.g. 4MB

• Physical memory is split into frames
of same size as pages

• Page table maps pages to frames
• No external fragmentation

page size
Can only allocate multiples of page size
to processes;
• large page size⇒ high internal
fragmentation

• small page size⇒ large page table



Address translation

• High order bits: page/frame number
• Low order bits: offset within page/frame
• One page table for each process stored in memory⇒ two memory accesses
per memory instruction



Translation look-aside buffer

• Small lookup table in hardware (TLB) stores recently used page numbers and
their corresponding frame numbers

• Page in TLB: very fast access
• Page not in TLB: need to
lookup table in main
memory (slow), add
page/frame combination to
TLB

• Size of TLB is limited



Effective access time (TLB)

How long does a logical memory access take on average? (effective access time)

• Suppose we need 10 nanoseconds for physical memory access
• Further, in 80% of the accesses we find page in TLB (hit ratio)
• Thus, in 20% we need a second memory access
• EAT = 0.8 · 10 + 0.2 · (10 + 10) = 12 nanoseconds
• If hit ratio was 99%, then EAT = 0.99 · 10 + 0.01 · (10 + 10) = 10.1 nanoseconds
⇒ 1% slowdown



Hierarchical page table

Motivation
If address space is very large (e.g. 64bit), then naive approach leads to either too
large page sizes or too large page table

• Use first bit section index outer page table, which contains pointer to inner
page table indexed by second bit section

• Tradeoff: The more
nested tables the
more physical
memory accesses per
logical memory access



Hashed page table

Motivation
If address space is very large (e.g. 64bit), then naive approach leads to either too
large page sizes or too large page table

• Use hash table to map
logical to physical
addresses



Inverted page table

Motivation
If address space is very large (e.g. 64bit), then naive approach leads to either too
large page sizes or too large page table

• Observation: number of
frames often much lower
than addressable pages

• Use table with one entry
per frame

• Disadvantage: requires
searching through table,
since we cannot index it
based on logical address



Midterm evaluation



https://etc.ch/arjN

https://etc.ch/arjN

	Overview
	Naive Approach: Contiguous Allocation
	Paging
	Midterm evaluation

