
DM510: Main Memory (cont.)

Lars Rohwedder



Disclaimer

These slides contain (modified) content and media from the official Operating
System Concepts slides: https://www.os-book.com/OS10/slide-dir/index.html

https://www.os-book.com/OS10/slide-dir/index.html


Today’s lecture

• Chapter 9+10 of course book



Paging (cont.)



Allocation of pages

• Not all addressable pages have
allocated frames (too many!). If it
isn’t, an invalid bit is set in page
table and access results in trap
⇒ variable and dynamic size of
processes’ memory

• When process is created or
requests additional pages,
frames are taken from a
free-frame list

• When process terminates or
releases pages, frames are
added to a free-frame list



Allocation of pages

• Not all addressable pages have
allocated frames (too many!). If it
isn’t, an invalid bit is set in page
table and access results in trap
⇒ variable and dynamic size of
processes’ memory

• When process is created or
requests additional pages,
frames are taken from a
free-frame list

• When process terminates or
releases pages, frames are
added to a free-frame list

Before allocation After allocation



Shared pages

Each process has own page table, but entries may point to same frame.



Shared pages

Each process has own page table, but entries may point to same frame.

Examples 1: Shared code
• Different processes often share
code, for example, standard libaries
such as libc

• Save space by keeping it only once
in physical memory

• Page tables usually have “read-only”
bit that can be used for protection



Shared pages

Each process has own page table, but entries may point to same frame.

Examples 2: Shared memory
• For communication between
processes, frames can be shared

• Then of course “read-only” bit
should not be set



Shared pages

Each process has own page table, but entries may point to same frame.

Examples 3: fork()
• System call fork() would need to
copy process’ entire memory

• Often exec() is called immediately
after fork() without modifying
memory, making copy seem
unnecessary

• Can use “copy-on-write” bit. If set,
the page will be copied before it is
modified.

Before write to page C (with “copy-on-write” bit)

After write to page C (with “copy-on-write” bit)



Swapping



Swapping

If RAM not large enough, can move inactive processes to backing store (HDD)

• HDD often has special swap partition for
this purpose

• On context switch a process may need to
be swapped in (brought back to RAM) or
swapped out

• Transfer times (moving data between RAM
and HDD) high, sometimes seconds.
Typically employed only in extreme cases

• Rarely used with SDDs (e.g. on mobile
devices) since SDDs wear off with many
writes



Virtual Memory



Overview of virtual memory

• As in swapping, total memory of
processes may be larger than
available physical memory and
backing store is used

• Data of pages in physical memory,
backing store (HDD/SDD), or both

Page fault
• If page’s invalid bit is set, access
leads to page fault trap

• Then either page does not exist
or needs to be moved from
backing store to a free frame



Overview of virtual memory

• As in swapping, total memory of
processes may be larger than
available physical memory and
backing store is used

• Data of pages in physical memory,
backing store (HDD/SDD), or both

Page fault
• If page’s invalid bit is set, access
leads to page fault trap

• Then either page does not exist
or needs to be moved from
backing store to a free frame



Demand paging

• When program is loaded, some data (e.g. instruction code) usually need to be
brought into memory

• Pure demand paging: bring page into memory only when accessed (upon
page fault)

• Prepaging: bring some pages already into memory to avoid large number of
page faults initially



Page replacement



Need of page replacement

Page may be needed in main memory, but no free frame available



Need of page replacement

Page may be needed in main memory, but no free frame available

• Need to select victim page that is
swapped out

• If victim page was not modified,
might not be necessary to write it
to backing store. This can be
checked using a dirty bit in page
table that is set when page is
written to

• Requested page then takes the
victim’s frame

But how to choose the victim page?



Page replacement algorithm

• Goal: choose victim pages to minimize page faults
• Evaluated for a fixed number of frames and a reference string containing a
list of page numbers referenced by process, e.g., 3 frames and reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1



First-in-first-out (FIFO)

• Victim is the page that has been longest in memory
• Example (3 frames):

Belady’s Anomaly
• More frames may lead to more page faults
• Example: 1,2,3,4,1,2,5,1,2,3,4,5 (see graph on
the right)



Optimal algorithm

• victim is page that will not be used for the longest⇒ minimizes page faults
• Example (3 frames):

• Impossible to implement (no knowledge of future)
• Used to judge performance of other algorithms
• Does not suffer from Belady’s Anomaly: the pages in memory when using
more frames are always a superset of those when using fewer frames



Least-recently-used (LRU)

• Victim is the page that has not been used for the longest
• Example (3 frames):

• Generally performes well
• Not very efficient to implement⇒ often faster approximations of LRU used
• (As in optimal algorithm) Does not suffer from Belady’s Anomaly: the pages
in memory when using more frames are always a superset of those when
using fewer frames



Frame allocation

• Each process typically has a minimum number of frames, algorithm for
determining exact number varies greatly

• Global replacement: victim page is chosen from all frames
• Local replacement: victim page is chosen only from process’s own frames



Frame allocation

• Each process typically has a minimum number of frames, algorithm for
determining exact number varies greatly

• Global replacement: victim page is chosen from all frames
• Local replacement: victim page is chosen only from process’s own frames

Thrashing
• When number of processes increases,
number of frames per process decreases

• Recently swapped out page are quickly
requested again

• Most time transferring between RAM and
backing store⇒ low CPU utilization


	Paging (cont.)
	Swapping
	Virtual Memory
	Page replacement

