DMB898 Parameterized Algorithms Lars Rohwedder
Fall 2025 rohwedder@sdu.dk

Exponential Time Hypothesis

Lecture Notes

The purpose of these notes is to give a proof that there is no FPT algorithm for the Clique problem
assuming that the Exponential Time Hypothesis (ETH) holds.

This is proven by a combination of the Sparsification Lemma and a reduction of 3-SAT to an
instance of Clique with clique size roughly 1/¢ and graph size roughly 2°™. The Sparsification
Lemma is from [2].

The emphasis of these notes is on simplicity and self-containedness, for which we accept slightly
worse bounds and lower generality. Specifically, while the paper above and most other sources
give a proof for k-SAT (or k-CSP), we only prove it for 3-SAT as this suffices for our purposes.

If you notice errors, please send them by email.

3-SAT and Exponential Time Hypothesis

Recall that a 3-SAT formular consists of n Boolean variables x1,...,x, and a logical AND over
m clauses, each forming a logical OR of at most 3 literals. A literal is a variable x; or a negated
variable —x;. The 3-SAT problem asks for a given 3-SAT formular to find an assignment of
variables satisfying every clause. Depending on preferences one might require each clause to have
exactly 3 literals. This does not make a difference for our purposes and here we make no such
assumption. As an example consider the formular:

(1 VaaVxg) A (mze VsV —xg) A (mxg V xg)

A satisfying assignment is x; = false,xo = true,z3 = true,x4 = true. A trivial enumeration
algorithm achieves a running time of O(2"). We have also seen an algorithm in the exercises that
achieves a slightly faster exponential running time, namely 0(3”/).

As shown by the Cook-Levin Theorem, the infamous hypothesis P#NP is equivalent to the
hypothesis that 3-SAT has no polynomial time algorithm. While this has become a standard
assumption in complexity theory and is heavily discussed, we are in fact not even close to poly-
nomial running time: there are many natural running times between polynomial and exponential,
for example, O(n'°8™), O(2V") or O(2"/1°81°8™) None of them have been achieved for the 3-SAT
problem. The best algorithm so far runs in roughly O(2°-3%7") time, that is, better only by a
constant factor in the exponent than the trivial enumeration algorithm.

This may lead us to believe that perhaps exponential time is required to solve 3-SAT. We
formalize it in the following hypothesis:

Definition 1 (Exponential Time Hypothesis (ETH)). There exists some constant ¢ > 0 such that
there is no O(2°") time algorithm for 3-SAT.

In other words, while we expect that some further constant improvement in the exponent may
be possible through additional tricks as the previous improvements, there could be an inherent
limit preventing us from any super-constant improvements in the exponent.

The ETH is unproven and even more controversal than P#NP. The ETH would of course
imply P#£NP, so there is little hope to see a proof of it any time soon. It still serves an important
purpose: If we are willing to believe in the ETH, then a lot of interesting lower bounds follow for
a wide range of problems. Even if we do not believe it, we can acknowledge that it is not an easy

rohwedder@sdu.dk

hypothesis to refute and therefore any consequences we prove based on it will also be difficult to
refute.

We will see in the following how the ETH implies that there is no FPT algorithm for the clique
problem, with the size of the largest clique as a natural parameter. After this, we will have a
starting point for parameterized reductions that we can use to show that all kinds of problems
do not have FPT algorithms assuming ETH. Note that the standard toolbox from parameterized
complexity is typically based on the W-hierarchy, which we will not detail here. This is closely
related and the hypotheses used there, e.g. W[1] # FPT, are implied by the ETH. Hence, if we are
willing to accept the ETH (the stronger assumption), then the long list of consequences based on
W-hierarchy also follows. We refer to the textbook [1] for more information. A nice aspect of the
proof via the ETH is that it gives us evidence against the existence of FPT algorithms based on
an assumption that is not inherently about parameterization, but naturally relates to the existing
complexity assumption of P#£NP.

Sparsification Lemma

Before we can show hardness for Clique, we need an important result that essentially says that
with respect to exponential time, a 3-SAT instance with very many clauses is not harder than one
with only O(n) clauses. The latter is called a sparse instance.

Theorem 2 (Sparsification Lemma). If the ETH is true, then there is some &' > 0 such that there
is no O(25 ™+ time algorithm for 3-SAT.

Note that in general the number of clauses (without repetitions) can be as large as O(n?).
Hence, an algorithm with running time O(2°) would not trivially refute the ETH.

Assume that for every constant €/ > 0 there is an algorithm Sparse,, that solves 3-SAT in
time 0(25/(”+m)) We will show that this implies that also for every constant € > 0 there exists an
algorithm for 3-SAT with running time O(2°™); hence refuting the ETH.

Towards this, we define an intricate branching algorithm that in its leafs has only sparse
instances where it will call algorithm Sparse, as a subroutine. The number of leafs will be
roughly 2°". The algorithm uses a constant 0 < § < 1/10 that will influence the running time and
we think of it as very small. We will specify its value later. Roughly speaking, the smaller ¢ is,
the faster the algorithm.

Pseudo-sunflowers. We consider the clauses to be sets of literals. Then a set of clauses
Si,..., S of the same size |S;| = - -+ = |Sk| and with non-empty intersection ¥ = ﬂle S; #0is
called a pseudo-sunflower. We call Y the core and S7 \'Y,..., S, \ Y the petals. Note that this
structure differs from the sunflowers we saw earlier in kernelization algorithms. The differences
are that here we require Y to be non-empty and we allow that the petals overlap; hence the
name pseudo-sunflower. In a 3-SAT formular only three types of pseudo-sunflowers can occur, see

Figure 1: a small sunflower with core size |[Y| =1 and petal size |S1 \Y|=--- =S \Y|=1; a
medium sunflower with core size |Y| = 2 and petal size |[S1\ Y| =--- = |Sx \ Y| = 1; or a large
sunflower with core size |Y| = 1 and petal size [S1\ Y| =---=|Sp \ Y| = 2;

Branching over sunflowers. We devise a branching algorithm that carefully selects a sunflower
S1,...,S5k, Y and then branches on whether Y is true in the satisfying assignment (assuming there
is one) or not. If a satisfying assignment also satisfies Y, then we can safely add Y to the set
of clauses and the formular will still be satisfiable. If, on the other hand, Y is not satisfied by a
satisfying assignment, then the assignment needs to satisfy all petals Sy \'Y,..., S, \ Y. Thus,
we can add S1\Y,...,; St \ 'Y to the clauses. If we had a NO-instance, then neither of these two
branches can turn the instance into a YES-instance, since we are only adding clauses. Adding
clauses seems counterproductive for our goal of making the instance more sparse by branching.
However, we can now remove all clauses that strictly contain another clause. In particular, we
can remove S, ...,Sk in either case. The algorithm chooses a careful priority and bounds on the

Small sunflower I

Medium sunflower
Large sunflower

(core size 1, petal size 1)
(core size 2, petal size 1) (core size 1, petal size 2)

Figure 1: Types of pseudo-sunflowers

number of petals to choose the sunflower to branch on, see Figure 2 for the full algorithm. These
details are very important for the analysis to work.

Analysis

It is straight-forward that the branching strategy is safe in the sense that the clauses of one node
are satisfiable if and only if at least one of the clause sets of children constructed by branching is
satisfiable. Removing clauses that strictly contain other clauses also does not affect satisfiability
and returning NO in case that two contradictory singleton clauses exist is clearly the correct
answer. Furthermore, the Sparse algorithm is only called with clause sets of linear size.

Lemma 3. When Sparse is called, then |C| < 6n/52.

Proof. Suppose that |C| > 6n/§%. Since there are 2n different literals, there is a literal that appears
in at least 3/02 clauses. Out of these clauses at least 1/6> many must have the same size. These
clauses form a sunflower of size at least 1/6%; hence, the algorithm would branch instead of calling
Sparse. O

To bound the running time and to prove that the algorithm terminates at all, we need to
bound the number of leafs of the enumeration tree. Towards this, we consider a path P from the
root to a leaf of the tree. It is natural to hope that the length of any such path P is bounded by
én (or similar), which would give a bound of 2°™ on the number of leafs. We call the algorithm
Sparsess with at most 6n/82 clauses; hence its running time is O(2% ("+6n/8%)) The total running
time would therefore be n@() . 289" which by choosing § = £/9 would solve the 3-SAT instance
in time O(2°™). Unfortunately, the length of P can be large in general.

We will carefully analyze the number of core branches (where Y is satisfied) and petal branches
(where Y is not satisfied) in P. We will show that although the number of core branches can be
large, the number of petal branches is very small, which will suffice to give a good bound on the
number of leafs.

Therefore, we look at the six combinations of small, medium, large branches with the core and
petal variant in each. We start with some simple bounds.

Lemma 4. The number of small and large core branches in any path P is at most n.

Proof. In either case we have that |Y| = 1 and Y is added to the clause set, which means the
number of singleton clauses increases, essentially fixing the truth value of one variable. Since each
variable can only occur once in a singleton clause and we never remove any singleton clauses, the
number of small and large core branches is at most n. 0

Input: variables V' and clauses C, where each clause is a set of at most 3 literals.
Output: YES if there exists truth assignment that satisfies all clauses C or NO other-
wise.

While there are clauses C,C’" € C with C C C’

e C+C\{C'} // C implies C'
If {z;} € C and {—x;} € C for some z; € V

e return No
If there is a small sunflower Y, Sy, ..., S, with & > 1/6

e return Alg(V, CU{Y}) or Alg(V,CU{S1\Y,...,Sx\Y})
else if there is a medium sunflower Y, Sq,...,S; with & > 1/6

e return Alg(V, CU{Y}) or Alg(V,CU{S1\Y,...,Sx\Y})
else if there is a large sunflower Y, Sy, ..., S with k > 1/62

e return Alg(V, CU{Y}) or Alg(V,CU{S1\Y,...,Sx\Y})
else

e return Sparsess(V,C)

Figure 2: Branching algorithm

Lemma 5. The number of small and medium petal branches is at most én.

Proof. In either case we have that |S; \ Y| = 1 for each petal and the number of petals is at least
1/6. All petals are added to the clause set. Therefore, the number of singleton clauses increases
by 1/6. As in the previous lemma, each singleton clause can only be added once. O

For the last two types of branches these simple arguments are not sufficient. To handle them,
it helps to take a closer look at nmew 2-clauses, that is, clauses consisting of exactly two literals
that have not been in the original clause set. In other words, 2-clauses that were added by some
branching within the path P. This is relevant, because both of the remaining cases add new
2-clauses.

Lemma 6. Let Y, S,...,S; be a small sunflower (i.e, |Y| =Y\ S| =--- =Y\ S| =1)
consisting only of new 2-clauses. Then k < 2/0.

Proof. We will show that this is an invariant that is maintained by each branching. Clearly, in
the initial clause set it holds, since there are no new clauses. Let k the the maximal size of a small
sunflower consisting of new 2-clauses.

Case 1: k > 1/4. Then the next branch is either a small core branch or a small petal branch,
since small branches take priority over all others. Either variant does not add a 2-clause. Thus, k
does not increase.

Case 2: k < 1/4. In this case we may add new 2-clauses through either a medium core branch
or a large petal branch. It suffices to show that one such branch cannot add more than 1/§ many
2-clauses with a literal in common. Then the size of a small sunflower consisting of new 2-clauses
can still only have size 2/§: at most 1/§ from before the branch and at most 1/6 added through
the branch.

Figure 3: Leaf in enumeration tree identified by core and petal branches

A medium core branch only adds a single 2-clause. Hence, consider a large petal branch
on a sunflower Y’,S7,...,5;. Assume that the large petal branch adds more than 1/§ many
2-clauses that have a literal in common. In other words, there are i7 < iy < --- < 1 with

Y” = ([, S\ Y # 0 and b’ > 1/6. In this case Y/ UY", 5]

, .
Gyo -0, forms a medium

sunflower with more than 1/§ petals, which would have taken priority over the large sunflower. A
contradiction. O

The invariant above lets us bound the total number of new 2-clauses added throughout P.
Lemma 7. For any path P, at most 4/ - n many new 2-clauses are added.

Proof. Note that at any leaf there are at most 2n/d many 2-clauses, old or new. Otherwise, one
literal would appear in at least 1/ many 2-clauses, resulting in a sufficiently large small sunflower
to branch on. Hence, the number of added 2-clauses is at most 2n/d plus the number of removed
2-clauses during P. Only when we add a singleton clause, we remove a 2-clause and each added
singleton claus can only remove 2/§ many 2-clauses because of Lemma 6. Hence the number of
new 2-clauses added in the entire path can be at most

n/d+n-2/0=4/0-n. O
Lemma 8. The number of medium core branches is at most 4/0 - n.
Proof. Each medium core branch adds a new 2-clause. Only 4/§-n new 2-clauses can be added. [
Lemma 9. The number of large petal branches is at most 46 - n.

Proof. Each large petal branch adds 1/6% many 2-clauses. Only 4/§ - n many 2-clauses can be
added. O

Thus, the total number of petal branches is at most on + dn + 4dn < 66n. The total number
of core branches is at most n+n+4/6-n <6/ -n. Each leaf is uniquely identified by how many
petal and core branches are taken and in which order on the path to the leaf, see Figure 3. It
follows that the number of leafs of the branching tree is at most

[6/inj |66n] (Z n k‘)
; k)~
=0 k=0

The following is a fairly good bound of the binomial coefficient. It is tight up to the factor of e in
the basis.

Lemma 10. For all a > b,

Furthermore, the right-hand side of equation above is clearly non-decreasing in a. It is also
non-decreasing in b for b € [0,ea/2]. The proof is relatively simple, but we omit it here. Thus,
each element from the previous sum can be bounded as

. . k 66n 66n
i+k - e(i + k) < (< 7/6-n < (3 < 912log(3/8)6m
k)= k - 66n —\ 42 -

The total running time of the algorithm, including the calls to Sparsess is therefore

nO(l) . 21210g(3/6)~6~n . 263(n+6n/62) < 21910g(3/6)'6'n]

We choose § > 0 such that 191og(3/9) - 0 < ¢, resulting in a running time of O(2°™). This finishes
the analysis.

ETH-hardness of Clique

We are now equipped to prove the hardness of Clique.

Theorem 11. Unless the ETH fails, there is no FPT algorithm for the Clique problem parame-
terized by clique size.

Proof. We will assume that there is an FPT algorithm for the Clique problem and then derive
a fast algorithm for 3-SAT from it. Towards this, assume that there is an algorithm that solves
Clique in time f(k)-n%, where C' > 1 is a constant and f is a computable function.

Let e > 0. We will devise an algorithm solving 3-SAT in time O(2°™). Using the Sparsification
Lemma and the fact that we can choose ¢ arbitrarily, this refutes the ETH (under our assumptions).
Compute an arbitrary partition P of the clauses of the 3-SAT formular into sets of |[em/(6C)|
many clauses each and possibly one set with fewer clauses. Then the number of these clause sets
is [P| = [m/[em/(6C)]] < O(1/e).

Since each clause set A € P contains at most em/(6C) clauses and each clause contains
at most 3 literals, the total number of different variables X(A) that appear in A is at most
| X (A)| <em/(2C). Let us now enumerate every possible partial variable assignment of variables
appearing in A. Denote by A(A) the set of all partial variable assignments A : X (A) — {true, false}
that satisfy all clauses in A. Then |A(A)| < 25/(C),

Now create the following instance of the Clique problem. For every A € P and every A € A(A)
we introduce one vertex v(A, A). Then for every pair of vertices u = v(A,), w = v(A’, '), where
A# A’ we add an edge (u,w) if and only if (i) = N (¢) for all i € X(A)N X (A"), that is, the two
partial variable assignments have no variable on which they disagree. There are no edges between
vertices v(A,x),v(A,x") corresponding to the same clause set A € P.

We now prove that the graph has a clique of size |P| if and only if the 3-SAT formular is
satisfiable. Assume that the 3-SAT formular is satisfiable with a variable assignment A. For each
A € P let \x(a) : X(A) — {true, false},i — A(i) be the partial variable assignment that is
consistent with A. Then the vertices v(A4, A\|x(a)), A € P, are a clique of size |P|.

For the other direction, assume that there exists a clique of size |P|. Since there is no edge
between any vertices of the same set A € P, the clique must contain exactly one vertex v(A4, *)
for each A € P. We define a variable assignment A where \(i) = A4(i) for an arbitrary A € P with
i € X(A). Note that the choice of A does not matter, since all clause sets that contain variable
1 will have the same truth assignment of i. The assignment A is satisfying because every clause
appears in some clause set A € P and one of its literals is true in A*. This is the same value that
the variable has in A; hence the clause is also satisfied by .

The graph can be constructed in time O((QE’”/(QC))Q) < 0(2°™). Using the FPT algorithm we
can check in time f(|P]) - (25™/(29))C < O(2°™) whether there exists a clique of size |P|. Note
that because |P| = O(1/¢) is a constant, also f(|P|) is constant. Thus, the overal running time
for solving the 3-SAT instance is O(2°™). O

References

[1] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dédniel Marx, Marcin
Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

[2] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.

