DMB898 Parameterized Algorithms Lars Rohwedder
Fall 2025 rohwedder@sdu.dk

Eisenbrand-Weismantel Algorithm

Lecture Notes

The results described here are based on Eisenbrand and Weismantel’s algorithm from [1] that
solves integer linear programs in FPT time in the number of constraints and the largest coefficient
in a constraint. The emphasis of these notes is on simplicity and self-containedness, for which
we accept slightly worse bounds and running times (although the difference is marginal). If you
notice errors, please send them by email.

Overview

We consider integer linear programs in a form with equality constraints and encoded using matrices
and vectors. This will be more convenient to work with and other types of constraints can be
transformed into this by adding slack variables.

Given coefficients of the objective ¢ € Z", a matrix A € {—A,..., A}™ " right-hand side
b € Z™ and lower and upper bounds ¢; € ZU {—oco},u; € ZU {0}, i € {1,2,...,n}, our task is
to solve

min ¢ x

Ax =10
Elgxlgu“ T, €L foralli:l,Q,...,n

Each row of A encodes the coefficients of a constraint and the corresponding entry of b describes
the constant term in the constraint. Each column of A corresponds to one variable.

Example. Consider a variant of the Knapsack problem with three items of profits 4, 5, 1, weights
2,3,2, and capacity 6, where in addition we are required to pick at most two items, then this can
be modelled as the following integer linear program:

min —4x1—5r9 — T3
21+ 3x9 + 223+ 51 =6
T1+To+ T3+ 59 =2
x1,x9,x3 € {0,1}

S1,892 € Zzo

Here the s; and sy are slack variables that transform the < constraint into an equality constraint.
In matrix-vector encoding we have the values:

1
1

2 3 2 1
A‘(1110 !
(6.9]
0.9]

— o
~
>
Il
R
N D
~_
o
|
O O = Ol
~
Il
OO O OO
IS
Il

rohwedder@sdu.dk

LP relaxation. The LP relazation of the ILP above is obtained by omitting the integrality
constraints: The resulting linear program can be solved in polynomial time, but we are interested
in an integer solution. As a first step, we can get a solution where not too many variables are
non-integer.

Lemma 1. Let A € R™*" b € R™, ¢ € R, and {; € RU {—-o0},u; € RU {oo} for each
i€{1,2,...,n}. If the linear program

min ¢ x

Axr=b
b <xzi <wuyy, x; €R foralli=1,2,....n

is feasible and bounded, then it has an optimal solution x* with
Hie{l,...,n}: 4 <zl <u}| <m.
Such a solution can be found in polynomial time.

Note that with integer bounds, the other at least n —m variables must be integer. Eisenbrand
and Weismantel’s algorithm crucially relies on the following theorem.

Theorem 2 (Proximity theorem). Assume that an ILP of the form above is feasible and bounded.
Let x* be a optimal solution to the LP relaxation with at most m non-integral variables. Then
there exists some optimal integer solution x with

n
lx — 2% = Z lz; — 27| < (2m*A +1)™ 4+ m =: prox .
i=1

In particular,

le = [2"]|lL = Z lz; — |27 || < (2m2A 4+ 1)™ 4 2m =: prox’.
i=1

This bound might be surprising, because it is independent of n. In fact, if many of the variables
were not already integers then there would be no hope to achieve something close to this. Consider
the example

14+ Togp =1
IEl,...,IQnG{O,l} .

One solution to the LP relaxation is x* = (1/2,...,1/2)T. However, any integer solution would
need to have n many 1s and n many 0s, so it would be at distance n in ¢1-norm to x*. This does
not form a counter-example to the theorem above, because the theorem requires that only few
variables are non-integer, which comes “for free” because of the previous lemma.

Before we prove the proximity theorem and the lemma, we will look at how we can exploit it
in a dynamic program.

Dynamic Program

We proceed similar to the Knapsack dynamic program based on “dominance”, see Figure 1. The
dynamic program computes in each iteration i a set of tripels (C, B, k) with the meaning that C
is the optimal value that can be achieved restricted to variables 1,...,7 and a right-hand side B
and a distance of k to |#*|. More formally:

e compute optimum x* to LP relaxation with < m non-integral variables

o T+ {(0,0,0)} // set of undominated (objective, right-hand side, distance-to-|x*|)
triples obtainable

e forie{1,2,...,n}
- T «T
T+« 0
— for x; in {max{¥;, |} | — prox’},...,min{u;, |z}] + prox’}}

x T+ TU{(C+cixi, B+ Az, k+||af] —24]) | (C,B, k) e T'}
// A; is the ith column of A

— for (C,B,k),(C",B",k') e T withC < C',B=B' k=F
* T+ T\(C',B',K)

— for (C, B, k) € T with k > prox’
* T« T\ (C,B,k)

e return min{C' | (C, B,k) € T,B = b}

Figure 1: Algorithm ILP(n, A, b, ¢, ¢, u)

Lemma 3. After iteration i of the dynamic program, we have for each B € Z™ and k € Z>¢ that
T contains (C, B, k) if and only if k < prox’ and

min chxj | i € {b;,...,u;}Vj € {1,2...,@'},2ijj :B,Z|xj— lzi]l =k (1)
j=1 j=1

j=1
exists and is equal to C'.

Proof. We prove this by induction over i. For ¢ = 1 this is true because we enumerate all elements
over which the minimum (1) is taken (all choices of of 1) and then remove all suboptimal tripels
(a removal only happens if A; = 0).

Assume now that ¢ > 1. We first argue that we only have tripels (C, B, k) that correspond to

solutions 1, ...,z; with 23:1 Ajz; = B, 22:1 |z; — [z}]] = k. This is because we derive each
tripel from another tripel (C', B', k') with C’ = C—c¢;x;, B' = B—A;x;, and k' = k—|z;—|z7]|. By
induction, (C’, B', k) corresponds to a solution z/, ..., 2} ; with 23;11 cjxly = C', E;;l Ajaly =

B’, and Z;;ll |z — [=}]| = k'. Thus, (C, B, k) corresponds to 1,...,z;_,z;. Clearly, all tripels
with k > prox’ are also removed.

It remains to argue that for each B € Z™ and k < prox’ we add the optimal tripel, assuming (1)
exists, which then also implies that all non-optimal tripels do not remain in the tripel set. Let x be
an optimal solution to (1) and let C' = 37, ¢;x;. Define k' = k —|z; — |2f]|, B’ = B — A;x;, and
C' = C — ¢;x;. By induction, after iteration ¢ — 1 the tripel set must have contained (C”, B’, k')
for the optimal C” corresponding to a solution 2, ...,2; ;. This is because the minimum exists
with z1,...,7;_1 being one of the choice. In particular, C’ > C”. Thus, in iteration i we add
(C" + ¢y, B+ Ay K + |x; — |27]]). We have that C” 4 ¢;z; < C' + ¢;z; = C by the previous
inequalities. Furthermore, we have C” + ¢;x; > C because otherwise ¥, ..., y;_1, x; would have a
smaller objective than z, contradicting the optimality of . Thus, (C, B, k) is indeed contained in
T after iteration i. O

It follows that the algorithm is correct. We now bound its running time.

Lemma 4. The dynamic program runs in time n - (mA)O(mz).

Proof. Tt suffices to bound the size of 7 by (mA)°(™*) at the beginning of each iteration. Notice
that by Lemma 3 there is at most one tripel (C, B, k) for each B,k. However, many B,k have
no tripel. If there is a tripel (C, B, k), then k < prox’ and there is a solution z1,...,z; with
Az + - Ajwy = Band Y05, |xj — [27]| = k. Thus,

1B = (Aslr] + -+ Ailz7 oo = [Arza + -+ Aswi — (A [27] + - + Ail27]) |0

:=B*

n

<Y N Ailloo (@i — L)) S AN (@i — la]) < kA
i=1 i=1
There only exist (2kA 4+ 1)™ < (2prox’A + 1)™ integer vectors B with ||B — B*||cc < kA. Thus,
at the beginning of an iteration |7| < (2prox’A + 1)™ - prox’ < (mA)O(mg) O

Few non-tight variables

In this section we prove Lemma 1. Let x be any optimal solution to the linear program, which
can be found in polynomial time using known algorithms. Denote by i; < --- < i, the indices of
variables with £;; < z;; < u;;. If h <m then we simply return z. Otherwise, denote by 4; € R™
the ith column vector of A. Since 4, ,..., A;, are more than m vectors in dimension m, they must
be linearly dependent. This means there are A1, ..., \;, € R (that can be computed in polynomial
time using standard linear algebra), not all zero such that

MA;, +--+ A, =0

Assume without loss of generality that Aic;, + -+ Apc;, < 0. Otherwise, negate all A;.
For each j € {1,...,h} define

“h A >0
(5j = Zij;fij if /\j <0
o} if)\j =0

Intuitively, 6; describes the largest value such that x;; + d;A; still satisfies the variable bounds of
the i;th variable. Note that ¢; > 0 for all j € {1,...,h} and § # oo for at least one j € {1,...,h}.
Thus,

§:=min{d; : j € {L,...,h}}

is finite and non-negative. Consider the solution z’ with

’ $Z+(5>\J lf’L:ZJ
€T. =
! Z; if i ¢ {i1,...,in}

We will argue that 2’ is an optimal solution to the linear program with at least one more variable
at one of its bounds. Regarding the optimality we have

n n h n
E Cil‘; = E CiTi + E Cij(S)\j < E CiT; .
i=1 i=1 j=1 i=1

Regarding feasibility, because of the choice of Aj;, we have

h h
Ar' = Az +) A 6N =Av 405> NA;, =b.

Jj=1 Jj=1

Finally, consider the variable bounds. Let j € {1,...,h}. If A\; > 0 then

’
xX,;.
vj

=i, + 0N > x;; > {;; and
=Zi; + 0N S@i; + 07 = wiy +ui; —

/
€T.:

(2 v

J

If A; <0 then

I;j = Iij + 5)\] Z xij + 6j>\j = Iij +£1} — :Cij = Eij and

l’;] = fEU + (S)\] S SCZ‘j S Uij .

Notice that for at least one j we have that 6 = J;. In this case, the second inequality in the first
case or the first inequality in the second case would become an equality and therefore the variable

/

T is now at one of its bounds. We repeat the procedure above until A < m.

Proof of proximity theorem

We will now prove Theorem 2. Throughout this section denote by z* an optimal solution to the
LP relaxation with at most m non-integral variables. Let z be an optimal integer solution with
||z — 2*||; minimal.

We think about the vector x — x* as the total change to move from the fractional to the integer
solution. To better analyze it, let us break x — z* into smaller pieces. The first piece is the vector
r € Z™, which simply rounds z* towards x in every non-integer component. Formally, define

* * : *
i [xf] —af ifxf <ua
. * : *
Pt el >y

Thus, x* + r is an integer vector, but it may not be feasible, that is, A(z* + 1) # b is very likely
and even if it was feasible, it may not be optimal.

We split the remaining change, that is, z — (z* +r), into a sequence of changes d®, . dM e
{—1,0,1}™ that increase or decrease single variables by one: For every variable index i € {1,...,n},
if #¥ +7; < x; then we add x; — (z} + ;) many vectors d¥) = (0,0,...,0,1,0,...,0), which have
a 1 at index ¢ and zeroes everywhere else; if 27 + r; > x; then we add =} + r; — x; many vectors
dV) = (0,0,...,0,—1,0,...,0), which have a —1 at index ¢ and zeroes everywhere else.

By construction we have that

h
x:x*JrrJer(j) .
j=1

If we start with z* and we now only add a subset of the changes {r,d"),...,d®}, then we will
obtain a variable assignment that at least respects the variable bounds. Other than that it may
still be infeasible, suboptimal or even fractional (if it does not contain r).

Lemma 5. For every P C {r,d",d®,...,d®} and z = z* + Zpepp it holds that
U<z <wu; forallie{l,2,....,n}.

Proof. Let i € {1,2,...,n}. If 2} < z; then all vectors are non-negative in component i, that is,
r; > 0 and dgj) >0 forall j € {1,2,...,h}. Thus,

h
G<al<ai+ Y pi<aitri+ Y dP =z <u
pep =1

———

=z;

Conversely, if 27 > z; then all vectors are non-positive in component ¢ and therefore

h
&-gmi:x’{JrriJergj)§x’{+2pi§x;‘§ui. O
j=1 peP
—_———

=z;

Later, we will show that if h is large enough, there must be a non-trivial subset of changes that
maintains feasibility of all constraints. As we see in the next lemma, this forms then a contradiction
to either the optimality of x* or the fact that x is the closest integer optimal solution to x*. This
will then give a bound on h and indirectly on the proximity.

Lemma 6. Let) # P C {r,dV),...,dD}. Then

> Ap#0.

pEP

Proof. Assume towards contradiction that Zpe p Ap = 0. Without loss of generality, assume that
r ¢ P. Otherwise, replace P by P’ = {r,dV), ... d®} \ P, which also satisfies

ZAp:A(xfw*)fZAp:bfbe:O.

pEP’ pEP

If the change in objective induced by P is negative, that is, ZPGP ¢'p <0, then z = z* + Zpepp
would be a feasible fractional solution with

cz=c"(z* + Zp) <clzr.
peEP

Hence, 2* would not be optimal, a contradiction. If on the other hand > c'p > 0, then

@' =z -3 cpp would be an integer solution and

ca =c(x— Zp) <cuz.
peP

peEP

Therefore, 2’ would also be an integer optimal solution and it would be closer to z* than x because
P # () and all negated changes applied to z reduce the distance to x*. This is a contradiction to
the choice of x. O

Notice that in total the changes keep the constraints valid, that is, Ar + Z;.Lzl AdY) = 0.

Each of the vectors Ar, Ad®, ..., Ad™ is integer and their components are bounded by mA in
absolute value. We will explain this in detail later. The proximity theorem is now reduced to the
following question:

How many integer vectors with bounded entries that sum to zero can there be without
any non-trivial subset already summing to zero?

In order to bound it, we will use the following result.

Theorem 7 (Steinitz Lemma). Let vy,...,v, € R™ with vy + ...+ v, = 0. Then there exists a
permutation o € Sy, such that for every i € {1,...,n} it holds that

10o2) + - + Vg (o) || < m - mlax flug]| -

Here || - || is an arbitrary norm.

|-l =2

Figure 2: Steinitz Lemma. Source: [1]

It is quite easy to see that the Steinitz Lemma holds in one dimension, where the vectors
are simply single reals of bounded absolute value: One can construct the permutation greedily.
Choose the first real arbitrarily. Then, if the current sum is lower than zero, choose next a positive
real, otherwise a negative one. Before proving it for arbitrary dimension, we will show how using
it we can now conclude the proof of the proximity theorem.

Proof of proximity theorem. Define v; = AdW, ... v, = Ad™, and vy = Ar. Then
v+ F o =A@ —a2*)=0.

Furthermore, Ay(7) is either a column of A or a negated column of A for each j € {1,2,... h}.
Thus, [|v;]je = [|AdY) || < A. Vector Ar is the sum of at most m columns of A (corresponding
to the fractional variables of z*), multiplied by a scalar between —1 and 1. Thus, ||[vp41]ec =
|A7]|co < mA. Finally, vy,...,v,41 are all integer vectors. For vy, ..., vy this is clear and for vy,
it must also hold because the sum of all is zero.

We apply the Steinitz Lemma to vy, ..., vs1 and obtain a permutation o € Sp41 such that for
all i € {1,2,...,h + 1} it holds that

HUa'(l) + -+ Ug(i)Hoo S m2A .

Notice that the number of integer vectors with entries bounded in absolute value by m2A is
(2m2A + 1)™. Therefore, if h +1 > (2m2?A + 1)™, then there would be two distinct i < i’ with

Vo(1) + T Vs(s) = Vo(1) T+ + Vo (i)

Therefore vy (j11) + -+ V@) = 0. By Lemma 6 this cannot be and hence h +1 < (2m2A +1)™.
We conclude

h
lz =2l < flrl+ Y 1pPl < mAh < m+ 2mPA+1)™ L
i=1

Proof of Steinitz Lemma

We give an algorithmic proof by determining o(n),o(n — 1),---,0(1) iteratively in this order.
The proof uses linear programming arguments and, in fact, heavily relies on Lemma 1. Let
Uy, ={1,2,...,n}\ {o(n),c(n —1),...,0(k + 1)} be the indices of unassigned vectors before we
determine o (k). The initial set U, = {1,2,...,n} contains all vector indices. Consider the linear

program

Z (vi)jzi =0 for all j € {1,...,m}
€Uy
>k =|Ul = m (LP;)
1€Uy
z; € [0,1] for all i € U

Note that LP,,, that is, the linear program for the first iteration, is feasible, because x1 = x5 =
<o =12, = (n—m)/n is a solution. We will maintain throughout the algorithm the invariant that
before determining o(k), the linear program LP}, is feasible.

Suppose that k¥ > m and we have already determined o(n),...,o(k + 1). Let Uy be the
unassigned vector indices. Let x be a solution to LPj, which we assume by the invariant exists.
Define ' = z - (|Ux| — m — 1)/(JUx| — m) to be a rescaled version of z. Then z’ is a solution to

Z(Uz‘)jiﬂizo for all j € {1,...,m}
€Uy
S o =Uil-m—1 (LP,)
1€U
z; € [0,1] for all i € Uy,

Because this LP is feasible and has m + 1 constraints, by Lemma 1 it also has a solution z* with
at most m + 1 fractional variables. Therefore there are at least |Uy| — m — 1 variables with value
zero or one. Not all of them can be one, since otherwise » ;. =; > |Ug| —m — 1. Let i € Uy
with 2f = 0. We set o(k) = ¢ and therefore Uy_; = Uy \ {i}. By dropping the variable x; from
LPj,, which is safe because it is zero, the linear program becomes LPy_1 and (z})ycv, , attests
its feasibility.

When k& = m then this construction no longer works, since |Uy| —m — 1 would become negative.
Then only |U,,,| = m vectors are left and we assign them arbitrarily to o(m),...,o(1).

It remains to analyze the size of each partial sum with the permutation as we constructed it.
If £ <m then

n n
Vo) 4+ + Vo)l < Vo)l + -+ o)l < k- r?:alx||vi|| <m- max sl -

Now assume that k > m. Then {o(1),...,0(k)} = Ui. Let = be the solution to LPj. It follows
that

ooy + - +veml =1 Y il
1€Uy
= Z v + Z (1 —)]
€U €Uy
< STzl + (1 -2l
€Uy €Uy
<) om s
<0+ (1 i) max |||
1€Uy
= ([Uxl =)) ma |oy |
iU

References

[1] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. ACM Trans. Algorithms, 16(1), November
2019.

