
DM898 Parameterized Algorithms Lars Rohwedder
Fall 2025 rohwedder@sdu.dk

Eisenbrand-Weismantel Algorithm

Lecture Notes

The results described here are based on Eisenbrand and Weismantel’s algorithm from [1] that
solves integer linear programs in FPT time in the number of constraints and the largest coefficient
in a constraint. The emphasis of these notes is on simplicity and self-containedness, for which
we accept slightly worse bounds and running times (although the difference is marginal). If you
notice errors, please send them by email.

Overview

We consider integer linear programs in a form with equality constraints and encoded using matrices
and vectors. This will be more convenient to work with and other types of constraints can be
transformed into this by adding slack variables.

Given coefficients of the objective c ∈ Zn, a matrix A ∈ {−∆, . . . ,∆}m×n, right-hand side
b ∈ Zm and lower and upper bounds ℓi ∈ Z ∪ {−∞}, ui ∈ Z ∪ {∞}, i ∈ {1, 2, . . . , n}, our task is
to solve

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ Z for all i = 1, 2, . . . , n

Each row of A encodes the coefficients of a constraint and the corresponding entry of b describes
the constant term in the constraint. Each column of A corresponds to one variable.

Example. Consider a variant of the Knapsack problem with three items of profits 4, 5, 1, weights
2, 3, 2, and capacity 6, where in addition we are required to pick at most two items, then this can
be modelled as the following integer linear program:

min−4x1−5x2 − x3

2x1 + 3x2 + 2x3 + s1 = 6

x1 + x2 + x3 + s2 = 2

x1, x2, x3 ∈ {0, 1}
s1, s2 ∈ Z≥0

Here the s1 and s2 are slack variables that transform the ≤ constraint into an equality constraint.
In matrix-vector encoding we have the values:

A =

(
2 3 2 1 0
1 1 1 0 1

)
b =

(
6
2

)
c =


4
5
1
0
0

 ℓ =


0
0
0
0
0

 u =


1
1
1
∞
∞



1

rohwedder@sdu.dk

LP relaxation. The LP relaxation of the ILP above is obtained by omitting the integrality
constraints: The resulting linear program can be solved in polynomial time, but we are interested
in an integer solution. As a first step, we can get a solution where not too many variables are
non-integer.

Lemma 1. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and ℓi ∈ R ∪ {−∞}, ui ∈ R ∪ {∞} for each
i ∈ {1, 2, . . . , n}. If the linear program

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ R for all i = 1, 2, . . . , n

is feasible and bounded, then it has an optimal solution x∗ with

|{i ∈ {1, . . . , n} : ℓi < x∗
i < ui}| ≤ m.

Such a solution can be found in polynomial time.

Note that with integer bounds, the other at least n−m variables must be integer. Eisenbrand
and Weismantel’s algorithm crucially relies on the following theorem.

Theorem 2 (Proximity theorem). Assume that an ILP of the form above is feasible and bounded.
Let x∗ be a optimal solution to the LP relaxation with at most m non-integral variables. Then
there exists some optimal integer solution x with

∥x− x∗∥1 =

n∑
i=1

|xi − x∗
i | ≤ (2m2∆+ 1)m +m =: prox .

In particular,

∥x− ⌊x∗⌋∥1 =

n∑
i=1

|xi − ⌊x∗
i ⌋| ≤ (2m2∆+ 1)m + 2m =: prox′.

This bound might be surprising, because it is independent of n. In fact, if many of the variables
were not already integers then there would be no hope to achieve something close to this. Consider
the example

x1 + · · ·+ x2n = n

x1, . . . , x2n ∈ {0, 1} .

One solution to the LP relaxation is x∗ = (1/2, . . . , 1/2)T. However, any integer solution would
need to have n many 1s and n many 0s, so it would be at distance n in ℓ1-norm to x∗. This does
not form a counter-example to the theorem above, because the theorem requires that only few
variables are non-integer, which comes “for free” because of the previous lemma.

Before we prove the proximity theorem and the lemma, we will look at how we can exploit it
in a dynamic program.

Dynamic Program

We proceed similar to the Knapsack dynamic program based on “dominance”, see Figure 1. The
dynamic program computes in each iteration i a set of tripels (C,B, k) with the meaning that C
is the optimal value that can be achieved restricted to variables 1, . . . , i and a right-hand side B
and a distance of k to ⌊x∗⌋. More formally:

2

• compute optimum x∗ to LP relaxation with ≤ m non-integral variables

• T ← {(0, 0, 0)} // set of undominated (objective, right-hand side, distance-to-⌊x∗⌋)
triples obtainable

• for i ∈ {1, 2, . . . , n}

– T ′ ← T
– T ← ∅
– for xi in {max{ℓi, ⌊x∗

i ⌋ − prox’}, . . . ,min{ui, ⌊x∗
i ⌋+ prox’}}

∗ T ← T ∪ {(C + cixi, B +Aixi, k + |⌊x∗
i ⌋ − xi|) | (C,B, k) ∈ T ′}

// Ai is the ith column of A

– for (C,B, k), (C ′, B′, k′) ∈ T with C < C ′, B = B′, k = k′

∗ T ← T \ (C ′, B′, k′)

– for (C,B, k) ∈ T with k > prox’

∗ T ← T \ (C,B, k)

• return min{C | (C,B, k) ∈ T , B = b}

Figure 1: Algorithm ILP(n,A, b, c, ℓ, u)

Lemma 3. After iteration i of the dynamic program, we have for each B ∈ Zm and k ∈ Z≥0 that
T contains (C,B, k) if and only if k ≤ prox′ and

min


i∑

j=1

cjxj | xi ∈ {ℓi, . . . , ui}∀j ∈ {1, 2 . . . , i},
i∑

j=1

Ajxj = B,

i∑
j=1

|xj − ⌊x∗
j⌋| = k

 (1)

exists and is equal to C.

Proof. We prove this by induction over i. For i = 1 this is true because we enumerate all elements
over which the minimum (1) is taken (all choices of of x1) and then remove all suboptimal tripels
(a removal only happens if A1 = 0).

Assume now that i > 1. We first argue that we only have tripels (C,B, k) that correspond to

solutions x1, . . . , xi with
∑i

j=1 Ajxj = B,
∑i

j=1 |xj − ⌊x∗
j⌋| = k. This is because we derive each

tripel from another tripel (C ′, B′, k′) with C ′ = C−cixi, B
′ = B−Aixi, and k′ = k−|xi−⌊x∗

i ⌋|. By
induction, (C ′, B′, k′) corresponds to a solution x′

1, . . . , x
′
i−1 with

∑i−1
j=1 cjx

′
j = C ′,

∑i−1
j=1 Ajx

′
j =

B′, and
∑i−1

j=1 |x′
j − ⌊x∗

j⌋| = k′. Thus, (C,B, k) corresponds to x′
1, . . . , x

′
i−1, xi. Clearly, all tripels

with k > prox′ are also removed.
It remains to argue that for each B ∈ Zm and k ≤ prox′ we add the optimal tripel, assuming (1)

exists, which then also implies that all non-optimal tripels do not remain in the tripel set. Let x be
an optimal solution to (1) and let C =

∑i
j=1 cjxj . Define k′ = k−|xi−⌊x∗

i ⌋|, B′ = B−Aixi, and
C ′ = C − cixi. By induction, after iteration i − 1 the tripel set must have contained (C ′′, B′, k′)
for the optimal C ′′ corresponding to a solution x′

1, . . . , x
′
i−1. This is because the minimum exists

with x1, . . . , xi−1 being one of the choice. In particular, C ′ ≥ C ′′. Thus, in iteration i we add
(C ′′ + cixi, B

′ +Aixi, k
′ + |xi − ⌊x∗

i ⌋|). We have that C ′′ + cixi ≤ C ′ + cixi = C by the previous
inequalities. Furthermore, we have C ′′ + cixi ≥ C because otherwise y1, . . . , yi−1, xi would have a
smaller objective than x, contradicting the optimality of x. Thus, (C,B, k) is indeed contained in
T after iteration i.

It follows that the algorithm is correct. We now bound its running time.

Lemma 4. The dynamic program runs in time n · (m∆)O(m2).

3

Proof. It suffices to bound the size of T by (m∆)O(m2) at the beginning of each iteration. Notice
that by Lemma 3 there is at most one tripel (C,B, k) for each B, k. However, many B, k have
no tripel. If there is a tripel (C,B, k), then k ≤ prox′ and there is a solution x1, . . . , xi with

A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗
j⌋| = k. Thus,

∥B − (A1⌊x∗
1⌋+ · · ·+Ai⌊x∗

i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ = ∥A1x1 + · · ·+Aixi − (A1⌊x∗
1⌋+ · · ·+Ai⌊x∗

i ⌋)∥∞

≤
n∑

i=1

∥Ai∥∞(xi − ⌊xi⌋) ≤ ∆

n∑
i=1

(xi − ⌊xi⌋) ≤ k∆ .

There only exist (2k∆+ 1)m ≤ (2prox’∆ + 1)m integer vectors B with ∥B − B∗∥∞ ≤ k∆. Thus,

at the beginning of an iteration |T | ≤ (2prox’∆ + 1)m · prox’ ≤ (m∆)O(m2)

Few non-tight variables

In this section we prove Lemma 1. Let x be any optimal solution to the linear program, which
can be found in polynomial time using known algorithms. Denote by i1 < · · · < ih the indices of
variables with ℓij < xij < uij . If h ≤ m then we simply return x. Otherwise, denote by Ai ∈ Rm

the ith column vector of A. Since Ai1 , . . . , Aih are more than m vectors in dimension m, they must
be linearly dependent. This means there are λ1, . . . , λh ∈ R (that can be computed in polynomial
time using standard linear algebra), not all zero such that

λ1Ai1 + · · ·+ λhAih = 0 .

Assume without loss of generality that λ1ci1 + · · ·+ λhcih ≤ 0. Otherwise, negate all λj .
For each j ∈ {1, . . . , h} define

δj =


uij

−xij

λj
if λj > 0

ℓij−xij

λj
if λj < 0

∞ if λj = 0

Intuitively, δj describes the largest value such that xij + δjλj still satisfies the variable bounds of
the ijth variable. Note that δj > 0 for all j ∈ {1, . . . , h} and δ ̸=∞ for at least one j ∈ {1, . . . , h}.
Thus,

δ := min{δj : j ∈ {1, . . . , h}}

is finite and non-negative. Consider the solution x′ with

x′
i =

{
xi + δλj if i = ij

xi if i /∈ {i1, . . . , ih}

We will argue that x′ is an optimal solution to the linear program with at least one more variable
at one of its bounds. Regarding the optimality we have

n∑
i=1

cix
′
i =

n∑
i=1

cixi +

h∑
j=1

cijδλj ≤
n∑

i=1

cixi .

Regarding feasibility, because of the choice of λj , we have

Ax′ = Ax+
h∑

j=1

Aijδλj = Ax+ δ
h∑

j=1

λjAij = b .

4

Finally, consider the variable bounds. Let j ∈ {1, . . . , h}. If λj > 0 then

x′
ij = xij + δλj ≥ xij ≥ ℓij and

x′
ij = xij + δλj ≤ xij + δjλj = xij + uij − xij = uij .

If λj < 0 then

x′
ij = xij + δλj ≥ xij + δjλj = xij + ℓij − xij = ℓij and

x′
ij = xij + δλj ≤ xij ≤ uij .

Notice that for at least one j we have that δ = δj . In this case, the second inequality in the first
case or the first inequality in the second case would become an equality and therefore the variable
x′
ij

is now at one of its bounds. We repeat the procedure above until h ≤ m.

Proof of proximity theorem

We will now prove Theorem 2. Throughout this section denote by x∗ an optimal solution to the
LP relaxation with at most m non-integral variables. Let x be an optimal integer solution with
∥x− x∗∥1 minimal.

We think about the vector x−x∗ as the total change to move from the fractional to the integer
solution. To better analyze it, let us break x− x∗ into smaller pieces. The first piece is the vector
r ∈ Zn, which simply rounds x∗ towards x in every non-integer component. Formally, define

ri =

{
⌈x∗

i ⌉ − x∗
i if x∗

i ≤ xi

⌊x∗
i ⌋ − x∗

i if x∗
i > xi

Thus, x∗ + r is an integer vector, but it may not be feasible, that is, A(x∗ + r) ̸= b is very likely
and even if it was feasible, it may not be optimal.

We split the remaining change, that is, x− (x∗ + r), into a sequence of changes d(1), . . . , d(h) ∈
{−1, 0, 1}n that increase or decrease single variables by one: For every variable index i ∈ {1, . . . , n},
if x∗

i + ri ≤ xi then we add xi − (x∗
i + ri) many vectors d(j) = (0, 0, . . . , 0, 1, 0, . . . , 0), which have

a 1 at index i and zeroes everywhere else; if x∗
i + ri > xi then we add x∗

i + ri − xi many vectors
d(j) = (0, 0, . . . , 0,−1, 0, . . . , 0), which have a −1 at index i and zeroes everywhere else.

By construction we have that

x = x∗ + r +

h∑
j=1

d(j) .

If we start with x∗ and we now only add a subset of the changes {r, d(1), . . . , d(ℓ)}, then we will
obtain a variable assignment that at least respects the variable bounds. Other than that it may
still be infeasible, suboptimal or even fractional (if it does not contain r).

Lemma 5. For every P ⊆ {r, d(1), d(2), . . . , d(ℓ)} and z = x∗ +
∑

p∈P p it holds that

ℓi ≤ zi ≤ ui for all i ∈ {1, 2, . . . , n} .

Proof. Let i ∈ {1, 2, . . . , n}. If x∗
i ≤ xi then all vectors are non-negative in component i, that is,

ri ≥ 0 and d
(j)
i ≥ 0 for all j ∈ {1, 2, . . . , h}. Thus,

ℓi ≤ x∗
i ≤ x∗

i +
∑
p∈P

pi︸ ︷︷ ︸
=zi

≤ x∗
i + ri +

h∑
j=1

d
(j)
i = xi ≤ ui .

5

Conversely, if x∗
i > xi then all vectors are non-positive in component i and therefore

ℓi ≤ xi = x∗
i + ri +

h∑
j=1

d
(j)
i ≤ x∗

i +
∑
p∈P

pi︸ ︷︷ ︸
=zi

≤ x∗
i ≤ ui .

Later, we will show that if h is large enough, there must be a non-trivial subset of changes that
maintains feasibility of all constraints. As we see in the next lemma, this forms then a contradiction
to either the optimality of x∗ or the fact that x is the closest integer optimal solution to x∗. This
will then give a bound on h and indirectly on the proximity.

Lemma 6. Let ∅ ≠ P ⊊ {r, d(1), . . . , d(ℓ)}. Then∑
p∈P

Ap ̸= 0 .

Proof. Assume towards contradiction that
∑

p∈P Ap = 0. Without loss of generality, assume that

r /∈ P . Otherwise, replace P by P ′ = {r, d(1), . . . , d(ℓ)} \ P , which also satisfies∑
p∈P ′

Ap = A(x− x∗)−
∑
p∈P

Ap = b− b− 0 = 0 .

If the change in objective induced by P is negative, that is,
∑

p∈P cTp < 0, then z = x∗ +
∑

p∈P p
would be a feasible fractional solution with

cTz = cT(x∗ +
∑
p∈P

p) < cTx∗ .

Hence, x∗ would not be optimal, a contradiction. If on the other hand
∑

p∈P cTp ≥ 0, then
x′ = x−

∑
p∈P p would be an integer solution and

cTx′ = cT(x−
∑
p∈P

p) ≤ cTx .

Therefore, x′ would also be an integer optimal solution and it would be closer to x∗ than x because
P ̸= ∅ and all negated changes applied to x reduce the distance to x∗. This is a contradiction to
the choice of x.

Notice that in total the changes keep the constraints valid, that is, Ar +
∑h

j=1 Ad(j) = 0.

Each of the vectors Ar, Ad(1), . . . , Ad(h) is integer and their components are bounded by m∆ in
absolute value. We will explain this in detail later. The proximity theorem is now reduced to the
following question:

How many integer vectors with bounded entries that sum to zero can there be without
any non-trivial subset already summing to zero?

In order to bound it, we will use the following result.

Theorem 7 (Steinitz Lemma). Let v1, . . . , vn ∈ Rm with v1 + . . . + vn = 0. Then there exists a
permutation σ ∈ Sn such that for every i ∈ {1, . . . , n} it holds that

∥vσ(1) + · · ·+ vσ(i)∥ ≤ m · n
max
i=1
∥vi∥ .

Here ∥ · ∥ is an arbitrary norm.

6

Figure 2: Steinitz Lemma. Source: [1]

It is quite easy to see that the Steinitz Lemma holds in one dimension, where the vectors
are simply single reals of bounded absolute value: One can construct the permutation greedily.
Choose the first real arbitrarily. Then, if the current sum is lower than zero, choose next a positive
real, otherwise a negative one. Before proving it for arbitrary dimension, we will show how using
it we can now conclude the proof of the proximity theorem.

Proof of proximity theorem. Define v1 = Ad(1), . . . , vh = Ad(h), and vh+1 = Ar. Then

v1 + · · ·+ vh+1 = A(x− x∗) = 0 .

Furthermore, Ay(j) is either a column of A or a negated column of A for each j ∈ {1, 2, . . . , h}.
Thus, ∥vj∥∞ = ∥Ad(j)∥∞ ≤ ∆. Vector Ar is the sum of at most m columns of A (corresponding
to the fractional variables of x∗), multiplied by a scalar between −1 and 1. Thus, ∥vh+1∥∞ =
∥Ar∥∞ ≤ m∆. Finally, v1, . . . , vh+1 are all integer vectors. For v1, . . . , vh this is clear and for vh
it must also hold because the sum of all is zero.

We apply the Steinitz Lemma to v1, . . . , vℓ+1 and obtain a permutation σ ∈ Sℓ+1 such that for
all i ∈ {1, 2, . . . , h+ 1} it holds that

∥vσ(1) + · · ·+ vσ(i)∥∞ ≤ m2∆ .

Notice that the number of integer vectors with entries bounded in absolute value by m2∆ is
(2m2∆+ 1)m. Therefore, if h+ 1 > (2m2∆+ 1)m, then there would be two distinct i < i′ with

vσ(1) + · · ·+ vσ(i) = vσ(1) + · · ·+ vσ(i′)

Therefore vσ(i+1) + · · ·+ vσ(i′) = 0. By Lemma 6 this cannot be and hence h+1 ≤ (2m2∆+1)m.
We conclude

∥x− x∗∥1 ≤ ∥r∥1 +
h∑

i=1

∥p(i)∥1 ≤ m+ h ≤ m+ (2m2∆+ 1)m .

Proof of Steinitz Lemma

We give an algorithmic proof by determining σ(n), σ(n − 1), · · · , σ(1) iteratively in this order.
The proof uses linear programming arguments and, in fact, heavily relies on Lemma 1. Let
Uk = {1, 2, . . . , n} \ {σ(n), σ(n − 1), . . . , σ(k + 1)} be the indices of unassigned vectors before we
determine σ(k). The initial set Un = {1, 2, . . . , n} contains all vector indices. Consider the linear

7

program ∑
i∈Uk

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈Uk

xk = |Uk| −m (LPi)

xi ∈ [0, 1] for all i ∈ Uk

Note that LPn, that is, the linear program for the first iteration, is feasible, because x1 = x2 =
· · · = xn = (n−m)/n is a solution. We will maintain throughout the algorithm the invariant that
before determining σ(k), the linear program LPk is feasible.

Suppose that k > m and we have already determined σ(n), . . . , σ(k + 1). Let Uk be the
unassigned vector indices. Let x be a solution to LPk, which we assume by the invariant exists.
Define x′ = x · (|Uk| −m− 1)/(|Uk| −m) to be a rescaled version of x. Then x′ is a solution to∑

i∈Uk

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈Uk

xk = |Ui| −m− 1 (LP′
k)

xi ∈ [0, 1] for all i ∈ Uk

Because this LP is feasible and has m+ 1 constraints, by Lemma 1 it also has a solution x∗ with
at most m+ 1 fractional variables. Therefore there are at least |Uk| −m− 1 variables with value
zero or one. Not all of them can be one, since otherwise

∑
i∈Uk

xi > |Uk| −m − 1. Let i ∈ Uk

with x∗
i = 0. We set σ(k) = i and therefore Uk−1 = Uk \ {i}. By dropping the variable xi from

LP′
k, which is safe because it is zero, the linear program becomes LPk−1 and (x∗

i′)i′∈Uk−1
attests

its feasibility.
When k = m then this construction no longer works, since |Uk|−m−1 would become negative.

Then only |Um| = m vectors are left and we assign them arbitrarily to σ(m), . . . , σ(1).
It remains to analyze the size of each partial sum with the permutation as we constructed it.

If k ≤ m then

∥vσ(1) + · · ·+ vσ(k)∥ ≤ ∥vσ(1)∥+ · · ·+ ∥vσ(k)∥ ≤ k · n
max
i=1
∥vi∥ ≤ m · n

max
i=1
∥vi∥ .

Now assume that k > m. Then {σ(1), . . . , σ(k)} = Uk. Let x be the solution to LPk. It follows
that

∥vσ(1) + · · ·+ vσ(k)∥ = ∥
∑
i∈Uk

vi∥

= ∥
∑
i∈Uk

xivi +
∑
i∈Uk

(1− xi)vi∥

≤ ∥
∑
i∈Uk

xivi∥+
∑
i∈Uk

(1− xi)∥vi∥

≤ 0 +
∑
i∈Uk

(1− xi)
n

max
j=1
∥vj∥

= (|Uk| −
∑
i∈Uk

xi)
n

max
j=1
∥vj∥

= m · n
max
j=1
∥vj∥.

8

References

[1] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. ACM Trans. Algorithms, 16(1), November
2019.

9

