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Today’s lecture

• Dynamic programming over paths

• Path decomposition

• Maximum Weight Independent Set

• Order Picking



Motivating case



Order Picking

Source: 1

• Setting: picker makes a tour
through a warehouse and picks
up a given set of orders

• Most commonly modelled as a
TSP problem where we
minimize the length of the trip

• Important problem in
Operations Research: Order
Picking makes up 55% of
warehouse operational costs
according to some estimates2

1: rebstorage.com/articles-white-papers/how-to-choose-your-industrial-warehouse-racking/

2: Facilities planning. Tompkins, White, Bozer, Tanchoco. 2010.

rebstorage.com/articles-white-papers/how-to-choose-your-industrial-warehouse-racking/


Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?

Source: https://arxiv.org/abs/1703.00699

Warehouse graphs from Order Picking are highly structured. NP-hardness does not necessarily hold there. (We
have not formalized this class of graphs yet.)

https://arxiv.org/abs/1703.00699
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Dynamic programming over paths



Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a path

• Order vertices {v1, . . . , vn} = V such that E = {(vi, vi+1) | i ∈ {1, 2, . . . , n− 1}}

• Dynamic table: for each i ∈ {1, 2, . . . , n}:

D[i] = maximum weight of independent set in {v1, . . . , vi}

• Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}

• Recurrence for i ≥ 3: D[i] = max{w(vi) +D[i− 2], D[i− 1]}

• Proving correctness by induction is straight-forward

• Optimum in D[n], solution can be output by easy modification

v1

v2

v3

v4

v5

v6

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?
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Pathwidth



Pathwidth and path decomposition

When is a graph almost a path?

Path decomposition

A path decomposition of a graph G = (V,E) is a path with vertices (called
bags) X1, . . . , Xr and edges between (Xi, Xi+1) for all i = 1, 2, . . . , r − 1

such that

• Xi ⊆ V for all i and
⋃r

i=1 Xi = V

• For each (u, v) ∈ E there is some i with {u, v} ⊆ Xi

• For every v ∈ V , i < j < k with v ∈ Xi and v ∈ Xk, we also have
v ∈ Xj

• The width of the decomposition is max{|X1|, . . . , |Xr|} − 1

• The pathwidth of the graph, pw(G) is the smallest width over any
decomposition. If G is a path itself, pw(G) = 1. pw(G) is a popular
parameter for algorithms for “path-like” graphs
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Nice path decomposition

Nice path decomposition

A path decomposition X1, . . . , Xr is nice if
X1 = Xr = ∅ and for every i = 1, 2, . . . , r− 1 either

• Xi+1 = Xi ∪ {v} for some v ∈ V \Xi

(introduce bag) or

• Xi+1 = Xi \ {v} for some v ∈ Xi (forget bag)

• We can in polynomial time transform a path
decomposition of width w to a nice path
decomposition of the same width

• A nice path decomposition is easier to work
with in dynamic programming

• When devising FPT algorithms in pw(G) we
assume that a path decomposition is given



Separation

Lemma

Let X1, . . . , Xr be a path decomposition of graph G. For any bag Xi,
there is no edge between (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
(Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1). We say, Xi ∩Xi+1 separates
X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xr.

× ×
(X1 ∪ . . . ∪Xi) \ (Xi ∩Xi+1) (Xi+1 ∪ . . . ∪Xr) \ (Xi ∩Xi+1)

Proof. Let u ∈ (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
v ∈ (Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1).

• u /∈ Xi ∩Xi+1 ⇒ u /∈ Xi+1 ∪ · · · ∪Xr

• v /∈ Xi ∩Xi+1 ⇒ v /∈ X1 ∪ · · · ∪Xi

⇒ There is no Xj with u, v ∈ Xj ⇒ (u, v) /∈ E

Xi

Xi+1

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems
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Dynamic programming over path
decomposition



Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard
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Order Picking



Warehouse graph

For the Order Picking problem we consider the following class of graphs:

• There are cross aisles i = 1, 2, . . . , h that form disjoint paths
(v

(i)
1 , . . . , v

(i)
k ). Usually h ≤ 3

• For each i = 1, 2, . . . , h− 1 and j = 1, 2, . . . , k the vertices v
(i)
j and

v
(i+1)
j are connected by a path (an “aisle”) where the inner vertices

of the path correspond to pick-up locations and are disjoint from
each other and from the cross-aisles

• There is one depot vertex d ∈ V at which the tour of the order
picker starts and ends

Source: https://arxiv.org/abs/1703.00699

The pathwidth of a warehouse graph is at most h+ 1 (see blackboard)

https://arxiv.org/abs/1703.00699
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Order Picking problem

Given a warehouse graph G = (V,E), edge lengths w : E → Z≥0, depot d ∈ V , and pick-up locations P ⊆ V ,
find a tour of minimal length that visits P ∪ {d}. The tour may cross vertices and edges several times.

Equivalent formulation

A multiset of edges F corresponds to the edges
crossed in some tour visiting exactly the vertices U if
and only if degF (u) is even and non-zero for each
u ∈ U and the graph (U, F ) is connected. See
Eulerian tour for reference.
Equivalent to Order Picking: Find a multiset of
edges F of minimal total length such that degF (v)

is even for each v ∈ V , degF (v) ̸= 0 for each
v ∈ P ∪ {d}, and (U, F ) is connected, where
U = {v ∈ V | degF (v) ̸= 0}.
In an optimal multiset F , each edge appears zero
times, once or twice.

Source:

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png
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Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero

• For each S ∈ P it holds that S is connected in (V, F )

• If i < r then each connected component in (V, F ) contains a vertex v ∈ Xi; if i = r then (V, F ) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)
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• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero
• For each S ∈ P it holds that S is connected in (V, F )

• If i < r then each connected component in (V, F ) contains a vertex v ∈ Xi; if i = r then (V, F ) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)} where the
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p′ ∈ {zero, odd, even}Xi−1 with

• pu = p′u + degF ′ (u) (with the natural operation on zero, odd, even) for each u ∈ Xi−1,
• pv consistent with degF ′ (v),
• let S′′ ⊆ Xi be the union of {v} and all S′ ∈ P ′ with (w, v) ∈ F for some w ∈ S′. Then

for each S ∈ P either S ⊆ S′′ or there exists S′ ⊆ P ′ with S ⊆ S′.
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Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)
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Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)



Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero

• For each S ∈ P it holds that S is connected in (V, F )

• If i < r then each connected component in (V, F ) contains a vertex v ∈ Xi; if i = r then (V, F ) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)



Experimental results

An optimized version of this dynamic program has been implemented in1

SCFS+ and SCF+: Commercial solvers on different ILP formulations

PDYN: FPT algorithm based on dynamic programming

Table shows number of unsolved instances with different sizes after 30 minutes.

1 Exact algorithms for the order picking problem. Pansart, Catusse , Cambazard. 2018.
https://arxiv.org/abs/1703.00699

https://arxiv.org/abs/1703.00699
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