
Treewidth I: Pathwidth

DM898: Parameterized Algorithms
Lars Rohwedder

Today’s lecture

• Dynamic programming over paths

• Path decomposition

• Maximum Weight Independent Set

• Order Picking

Motivating case

Order Picking

Source: 1

• Setting: picker makes a tour
through a warehouse and picks
up a given set of orders

• Most commonly modelled as a
TSP problem where we
minimize the length of the trip

• Important problem in
Operations Research: Order
Picking makes up 55% of
warehouse operational costs
according to some estimates2

1: rebstorage.com/articles-white-papers/how-to-choose-your-industrial-warehouse-racking/

2: Facilities planning. Tompkins, White, Bozer, Tanchoco. 2010.

rebstorage.com/articles-white-papers/how-to-choose-your-industrial-warehouse-racking/

Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?

Source: https://arxiv.org/abs/1703.00699

Warehouse graphs from Order Picking are highly structured. NP-hardness does not necessarily hold there. (We
have not formalized this class of graphs yet.)

https://arxiv.org/abs/1703.00699

Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?

Source: https://arxiv.org/abs/1703.00699

Warehouse graphs from Order Picking are highly structured. NP-hardness does not necessarily hold there. (We
have not formalized this class of graphs yet.)

https://arxiv.org/abs/1703.00699

Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?

Source: https://arxiv.org/abs/1703.00699

Warehouse graphs from Order Picking are highly structured. NP-hardness does not necessarily hold there. (We
have not formalized this class of graphs yet.)

https://arxiv.org/abs/1703.00699

Dynamic programming over paths

Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a path

• Order vertices {v1, . . . , vn} = V such that E = {(vi, vi+1) | i ∈ {1, 2, . . . , n− 1}}

• Dynamic table: for each i ∈ {1, 2, . . . , n}:

D[i] = maximum weight of independent set in {v1, . . . , vi}

• Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}

• Recurrence for i ≥ 3: D[i] = max{w(vi) +D[i− 2], D[i− 1]}

• Proving correctness by induction is straight-forward

• Optimum in D[n], solution can be output by easy modification

v1

v2

v3

v4

v5

v6

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?

Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a path

• Order vertices {v1, . . . , vn} = V such that E = {(vi, vi+1) | i ∈ {1, 2, . . . , n− 1}}

• Dynamic table: for each i ∈ {1, 2, . . . , n}:

D[i] = maximum weight of independent set in {v1, . . . , vi}

• Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}

• Recurrence for i ≥ 3: D[i] = max{w(vi) +D[i− 2], D[i− 1]}

• Proving correctness by induction is straight-forward

• Optimum in D[n], solution can be output by easy modification

v1

v2

v3

v4

v5

v6

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?

Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a path

• Order vertices {v1, . . . , vn} = V such that E = {(vi, vi+1) | i ∈ {1, 2, . . . , n− 1}}

• Dynamic table: for each i ∈ {1, 2, . . . , n}:

D[i] = maximum weight of independent set in {v1, . . . , vi}

• Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}

• Recurrence for i ≥ 3: D[i] = max{w(vi) +D[i− 2], D[i− 1]}

• Proving correctness by induction is straight-forward

• Optimum in D[n], solution can be output by easy modification

v1

v2

v3

v4

v5

v6

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?

Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a path

• Order vertices {v1, . . . , vn} = V such that E = {(vi, vi+1) | i ∈ {1, 2, . . . , n− 1}}

• Dynamic table: for each i ∈ {1, 2, . . . , n}:

D[i] = maximum weight of independent set in {v1, . . . , vi}

• Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}

• Recurrence for i ≥ 3: D[i] = max{w(vi) +D[i− 2], D[i− 1]}

• Proving correctness by induction is straight-forward

• Optimum in D[n], solution can be output by easy modification

v1

v2

v3

v4

v5

v6

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?

Pathwidth

Pathwidth and path decomposition

When is a graph almost a path?

Path decomposition

A path decomposition of a graph G = (V,E) is a path with vertices (called
bags) X1, . . . , Xr and edges between (Xi, Xi+1) for all i = 1, 2, . . . , r − 1

such that

• Xi ⊆ V for all i and
⋃r

i=1 Xi = V

• For each (u, v) ∈ E there is some i with {u, v} ⊆ Xi

• For every v ∈ V , i < j < k with v ∈ Xi and v ∈ Xk, we also have
v ∈ Xj

• The width of the decomposition is max{|X1|, . . . , |Xr|} − 1

• The pathwidth of the graph, pw(G) is the smallest width over any
decomposition. If G is a path itself, pw(G) = 1. pw(G) is a popular
parameter for algorithms for “path-like” graphs

Pathwidth and path decomposition

When is a graph almost a path?

Path decomposition

A path decomposition of a graph G = (V,E) is a path with vertices (called
bags) X1, . . . , Xr and edges between (Xi, Xi+1) for all i = 1, 2, . . . , r − 1

such that

• Xi ⊆ V for all i and
⋃r

i=1 Xi = V

• For each (u, v) ∈ E there is some i with {u, v} ⊆ Xi

• For every v ∈ V , i < j < k with v ∈ Xi and v ∈ Xk, we also have
v ∈ Xj

• The width of the decomposition is max{|X1|, . . . , |Xr|} − 1

• The pathwidth of the graph, pw(G) is the smallest width over any
decomposition. If G is a path itself, pw(G) = 1. pw(G) is a popular
parameter for algorithms for “path-like” graphs

Nice path decomposition

Nice path decomposition

A path decomposition X1, . . . , Xr is nice if
X1 = Xr = ∅ and for every i = 1, 2, . . . , r− 1 either

• Xi+1 = Xi ∪ {v} for some v ∈ V \Xi

(introduce bag) or

• Xi+1 = Xi \ {v} for some v ∈ Xi (forget bag)

• We can in polynomial time transform a path
decomposition of width w to a nice path
decomposition of the same width

• A nice path decomposition is easier to work
with in dynamic programming

• When devising FPT algorithms in pw(G) we
assume that a path decomposition is given

Separation

Lemma

Let X1, . . . , Xr be a path decomposition of graph G. For any bag Xi,
there is no edge between (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
(Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1). We say, Xi ∩Xi+1 separates
X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xr.

× ×
(X1 ∪ . . . ∪Xi) \ (Xi ∩Xi+1) (Xi+1 ∪ . . . ∪Xr) \ (Xi ∩Xi+1)

Proof. Let u ∈ (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
v ∈ (Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1).

• u /∈ Xi ∩Xi+1 ⇒ u /∈ Xi+1 ∪ · · · ∪Xr

• v /∈ Xi ∩Xi+1 ⇒ v /∈ X1 ∪ · · · ∪Xi

⇒ There is no Xj with u, v ∈ Xj ⇒ (u, v) /∈ E

Xi

Xi+1

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems

Separation

Lemma

Let X1, . . . , Xr be a path decomposition of graph G. For any bag Xi,
there is no edge between (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
(Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1). We say, Xi ∩Xi+1 separates
X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xr.

× ×
(X1 ∪ . . . ∪Xi) \ (Xi ∩Xi+1) (Xi+1 ∪ . . . ∪Xr) \ (Xi ∩Xi+1)

Proof. Let u ∈ (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
v ∈ (Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1).

• u /∈ Xi ∩Xi+1 ⇒ u /∈ Xi+1 ∪ · · · ∪Xr

• v /∈ Xi ∩Xi+1 ⇒ v /∈ X1 ∪ · · · ∪Xi

⇒ There is no Xj with u, v ∈ Xj ⇒ (u, v) /∈ E

Xi

Xi+1

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems

Separation

Lemma

Let X1, . . . , Xr be a path decomposition of graph G. For any bag Xi,
there is no edge between (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
(Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1). We say, Xi ∩Xi+1 separates
X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xr.

× ×
(X1 ∪ . . . ∪Xi) \ (Xi ∩Xi+1) (Xi+1 ∪ . . . ∪Xr) \ (Xi ∩Xi+1)

Proof. Let u ∈ (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
v ∈ (Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1).

• u /∈ Xi ∩Xi+1 ⇒ u /∈ Xi+1 ∪ · · · ∪Xr

• v /∈ Xi ∩Xi+1 ⇒ v /∈ X1 ∪ · · · ∪Xi

⇒ There is no Xj with u, v ∈ Xj ⇒ (u, v) /∈ E

Xi

Xi+1

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems

Separation

Lemma

Let X1, . . . , Xr be a path decomposition of graph G. For any bag Xi,
there is no edge between (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
(Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1). We say, Xi ∩Xi+1 separates
X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xr.

× ×
(X1 ∪ . . . ∪Xi) \ (Xi ∩Xi+1) (Xi+1 ∪ . . . ∪Xr) \ (Xi ∩Xi+1)

Proof. Let u ∈ (X1 ∪ · · · ∪Xi) \ (Xi ∩Xi+1) and
v ∈ (Xi+1 ∪ · · · ∪Xr) \ (Xi ∩Xi+1).

• u /∈ Xi ∩Xi+1 ⇒ u /∈ Xi+1 ∪ · · · ∪Xr

• v /∈ Xi ∩Xi+1 ⇒ v /∈ X1 ∪ · · · ∪Xi

⇒ There is no Xj with u, v ∈ Xj ⇒ (u, v) /∈ E

Xi

Xi+1

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems

Dynamic programming over path
decomposition

Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard

Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard

Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard

Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard

Maximum Weight Independent Set

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r} and S ⊆ Xi let

D[i, S] = max. weight of independent set I ⊆ X1 ∪ · · · ∪Xi where I ∩Xi = S or −∞ if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅ and S = ∅. Thus, D[i, S] = 0

Introduce bag: Xi = Xi−1 ∪ {v}.

D[i, S] =


−∞ if S is not independent,

D[i− 1, S \ {v}] + w(v) if S independent and v ∈ S,

D[i− 1, S] otherwise.

Forget bag: Xi = Xi−1 \ {v}. Then

D[i, S] =

{
−∞ if S is not independent

max{D[i− 1, S], D[i− 1, S ∪ {v}]} otherwise.

Running time: 2k · poly(n, k)

Correctness: blackboard

Order Picking

Warehouse graph

For the Order Picking problem we consider the following class of graphs:

• There are cross aisles i = 1, 2, . . . , h that form disjoint paths
(v

(i)
1 , . . . , v

(i)
k). Usually h ≤ 3

• For each i = 1, 2, . . . , h− 1 and j = 1, 2, . . . , k the vertices v
(i)
j and

v
(i+1)
j are connected by a path (an “aisle”) where the inner vertices

of the path correspond to pick-up locations and are disjoint from
each other and from the cross-aisles

• There is one depot vertex d ∈ V at which the tour of the order
picker starts and ends

Source: https://arxiv.org/abs/1703.00699

The pathwidth of a warehouse graph is at most h+ 1 (see blackboard)

https://arxiv.org/abs/1703.00699

Warehouse graph

For the Order Picking problem we consider the following class of graphs:

• There are cross aisles i = 1, 2, . . . , h that form disjoint paths
(v

(i)
1 , . . . , v

(i)
k). Usually h ≤ 3

• For each i = 1, 2, . . . , h− 1 and j = 1, 2, . . . , k the vertices v
(i)
j and

v
(i+1)
j are connected by a path (an “aisle”) where the inner vertices

of the path correspond to pick-up locations and are disjoint from
each other and from the cross-aisles

• There is one depot vertex d ∈ V at which the tour of the order
picker starts and ends

Source: https://arxiv.org/abs/1703.00699

The pathwidth of a warehouse graph is at most h+ 1 (see blackboard)

https://arxiv.org/abs/1703.00699

Order Picking problem

Given a warehouse graph G = (V,E), edge lengths w : E → Z≥0, depot d ∈ V , and pick-up locations P ⊆ V ,
find a tour of minimal length that visits P ∪ {d}. The tour may cross vertices and edges several times.

Equivalent formulation

A multiset of edges F corresponds to the edges
crossed in some tour visiting exactly the vertices U if
and only if degF (u) is even and non-zero for each
u ∈ U and the graph (U, F) is connected. See
Eulerian tour for reference.
Equivalent to Order Picking: Find a multiset of
edges F of minimal total length such that degF (v)

is even for each v ∈ V , degF (v) ̸= 0 for each
v ∈ P ∪ {d}, and (U, F) is connected, where
U = {v ∈ V | degF (v) ̸= 0}.
In an optimal multiset F , each edge appears zero
times, once or twice.

Source:

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

Order Picking problem

Given a warehouse graph G = (V,E), edge lengths w : E → Z≥0, depot d ∈ V , and pick-up locations P ⊆ V ,
find a tour of minimal length that visits P ∪ {d}. The tour may cross vertices and edges several times.

Equivalent formulation

A multiset of edges F corresponds to the edges
crossed in some tour visiting exactly the vertices U if
and only if degF (u) is even and non-zero for each
u ∈ U and the graph (U, F) is connected. See
Eulerian tour for reference.
Equivalent to Order Picking: Find a multiset of
edges F of minimal total length such that degF (v)

is even for each v ∈ V , degF (v) ̸= 0 for each
v ∈ P ∪ {d}, and (U, F) is connected, where
U = {v ∈ V | degF (v) ̸= 0}.
In an optimal multiset F , each edge appears zero
times, once or twice.

Source:

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

Order Picking problem

Given a warehouse graph G = (V,E), edge lengths w : E → Z≥0, depot d ∈ V , and pick-up locations P ⊆ V ,
find a tour of minimal length that visits P ∪ {d}. The tour may cross vertices and edges several times.

Equivalent formulation

A multiset of edges F corresponds to the edges
crossed in some tour visiting exactly the vertices U if
and only if degF (u) is even and non-zero for each
u ∈ U and the graph (U, F) is connected. See
Eulerian tour for reference.
Equivalent to Order Picking: Find a multiset of
edges F of minimal total length such that degF (v)

is even for each v ∈ V , degF (v) ̸= 0 for each
v ∈ P ∪ {d}, and (U, F) is connected, where
U = {v ∈ V | degF (v) ̸= 0}.
In an optimal multiset F , each edge appears zero
times, once or twice.

Source:

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero

• For each S ∈ P it holds that S is connected in (V, F)

• If i < r then each connected component in (V, F) contains a vertex v ∈ Xi; if i = r then (V, F) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)

Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero

• For each S ∈ P it holds that S is connected in (V, F)

• If i < r then each connected component in (V, F) contains a vertex v ∈ Xi; if i = r then (V, F) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)

Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero
• For each S ∈ P it holds that S is connected in (V, F)

• If i < r then each connected component in (V, F) contains a vertex v ∈ Xi; if i = r then (V, F) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)} where the
minimum is over all multisets F ′ of edges between v and Xi \ {v}, partitions P ′ of Xi−1 and
p′ ∈ {zero, odd, even}Xi−1 with

• pu = p′u + degF ′ (u) (with the natural operation on zero, odd, even) for each u ∈ Xi−1,
• pv consistent with degF ′ (v),
• let S′′ ⊆ Xi be the union of {v} and all S′ ∈ P ′ with (w, v) ∈ F for some w ∈ S′. Then

for each S ∈ P either S ⊆ S′′ or there exists S′ ⊆ P ′ with S ⊆ S′.
• each edge e ∈ E occurs at most twice in F

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)

Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero
• For each S ∈ P it holds that S is connected in (V, F)

• If i < r then each connected component in (V, F) contains a vertex v ∈ Xi; if i = r then (V, F) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}
Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′], where the minimum is over all

partitions P ′ of Xi−1 and p′ ∈ {zero, odd, even}Xi−1 with
• for each S ∈ P there exists S′ ∈ P ′ with S ⊆ S′ and,
• p′u = pu for each u ∈ Xi.
• if v ∈ P ∪ {d} then p′v ̸= zero, (v does not get isolated if it must be visited)
• if p′v ̸= zero and i < r then {v} /∈ P′, (component of v does not get disconnected)

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)

Dynamic program for Order Picking

Let X1, . . . , Xr be nice path decomposition of width k. For each i ∈ {1, . . . , r}, partition P of Xi (P = ∅ if
Xi = ∅), and p ∈ {zero, odd, even}Xi let D[i,P, p] be the minimum total distance of an edge multi-set F s.t.

• For each v ∈ Xi, degF (v) is zero if pv = zero, odd if pv = odd and even and non-zero if pv = even

• For each v ∈ (X1 ∪ · · · ∪Xi) \Xi we have degF (v) is even; if v ∈ P ∪ {d} then degF (v) is non-zero

• For each S ∈ P it holds that S is connected in (V, F)

• If i < r then each connected component in (V, F) contains a vertex v ∈ Xi; if i = r then (V, F) contains a
single connected component

We compute D[i,P, p] based on the following case distinction.

Base case: i = 1. Then X1 ∪ · · · ∪Xi = ∅. Thus, D[i,P, p] = 0

Introduce bag: Xi = Xi−1 ∪ {v}. Then D[i,P, p] = minF ′,P′,p′{D[i− 1,P ′, p′] +
∑

e∈F ′ w(e)}

Forget bag: Xi = Xi−1 \ {v}. Then D[i,P, p] = minP′,p′ D[i− 1,P ′, p′],

Running time: kO(k) · poly(n), since number of partitions is always at most kk

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)

Experimental results

An optimized version of this dynamic program has been implemented in1

SCFS+ and SCF+: Commercial solvers on different ILP formulations

PDYN: FPT algorithm based on dynamic programming

Table shows number of unsolved instances with different sizes after 30 minutes.

1 Exact algorithms for the order picking problem. Pansart, Catusse , Cambazard. 2018.
https://arxiv.org/abs/1703.00699

https://arxiv.org/abs/1703.00699

	TolDarkBlue Motivating case
	TolDarkBlue Dynamic programming over paths
	TolDarkBlue Pathwidth
	TolDarkBlue Dynamic programming over path decomposition
	TolDarkBlue Order Picking

