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Today'’s lecture

e Dynamic programming over paths
e Path decomposition

e Maximum Weight Independent Set
Order Picking



Motivating case



Order Picking

e Setting: picker makes a tour
through a warehouse and picks
up a given set of orders

e Most commonly modelled as a
TSP problem where we
minimize the length of the trip

e Important problem in
Operations Research: Order
Picking makes up 55% of
warehouse operational costs
according to some estimates?

1

Source:

1. rebstorage.com/articles-white-papers/hou-to- choose- your- industrial-warehouse-racking/

2. Facilities planning. Tompkins, White, Bozer, Tanchoco. 2010.


rebstorage.com/articles-white-papers/how-to-choose-your-industrial-warehouse-racking/

Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?


https://arxiv.org/abs/1703.00699
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Complexity of Order Picking

TSP is NP-hard, so is Order Picking hopeless to solve efficiently?
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Warehouse graphs from Order Picking are highly structured. NP-hardness does not necessarily hold there. (We
have not formalized this class of graphs yet.)


https://arxiv.org/abs/1703.00699

Dynamic programming over paths



Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set
e Input: Graph G = (V, E), weights w : V — Z>
e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 3~ _;w(v) is maximized




Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set

e Input: Graph G = (V, E), weights w : V — Z>

e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 3~ _;w(v) is maximized

Dynamic program if G is a path

e Order vertices {v1, ..

.,Un}t =V such that E = {(v;,vi1) |7 € {1,2,..

,n—1}}
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Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:

Maximum Weight Independent Set
e Input: Graph G = (V, E), weights w : V — Z>
e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 3~ _;w(v) is maximized

Dynamic program if G is a path
e Order vertices {v1,...,vn} = V such that £ = {(v;,vi1) |1 € {1,2,...,n —1}}
e Dynamic table: for each i € {1,2,...,n}:

DJi] = maximum weight of independent set in {v1,...,v;}

Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}
e Recurrence for i > 3: D[i] = max{w(v;) + D[i — 2], D[i — 1]}
e Proving correctness by induction is straight-forward

e Optimum in DIn], solution can be output by easy modification
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Maximum Weight Independent Set

Many problems become (computationally) easy if restricted to paths. Example:
Maximum Weight Independent Set

e Input: Graph G = (V, E), weights w : V — Z>
e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 3~ _;w(v) is maximized

Dynamic program if G is a path
e Order vertices {v1,...,vn} = V such that £ = {(v;,vi1) |1 € {1,2,...,n —1}}
e Dynamic table: for each i € {1,2,...,n}:

DJi] = maximum weight of independent set in {v1,...,v;}

e Base cases: D[1] = w(v1), D[2] = max{w(v1), w(v2)}
e Recurrence for i > 3: D[i] = max{w(v;) + D[i — 2], D[i — 1]}
e Proving correctness by induction is straight-forward

e Optimum in DIn], solution can be output by easy modification

Can similar ideas transfer to more general classes of graphs? e.g. graphs that are almost paths?
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Pathwidth



Pathwidth and path decomposition

When is a graph almost a path?

. oo e b o



Pathwidth and path decomposition

When is a graph almost a path?

. oo e b o

Path decomposition
A path decomposition of a graph G = (V, E) is a path with vertices (called
bags) X1,..., X, and edges between (X;, X;11) foralli=1,2,...,r—1
such that

e X;CVforalliand J;_; X; =V

e For each (u,v) € E there is some 7 with {u,v} C X;

e Foreveryv €V, i< j<kwithv e X; and v € X}, we also have

v E Xj
e The width of the decomposition is max{|X1|,...,|Xr|} — 1

e The pathwidth of the graph, pw(G) is the smallest width over any
decomposition. If G is a path itself, pw(G) = 1. pw(G) is a popular
parameter for algorithms for “path-like” graphs




Nice path decomposition

Nice path decomposition

A path decomposition X1, ..., X, is nice if
X1 =X, =0and foreveryi=1,2,..., 7 — 1 either

Xit1 = X; U{v} for some v € V' \ X;
(introduce bag) or

Xit1 = X; \ {v} for some v € X; (forget bag)

We can in polynomial time transform a path
decomposition of width w to a nice path
decomposition of the same width

A nice path decomposition is easier to work
with in dynamic programming

When devising FPT algorithms in pw(G) we
assume that a path decomposition is given




Separation

Lemma @
Let Xi,...,X, be a path decomposition of graph G. For any bag X;,

there is no edge between (X; U---U X;) \ (X; N X;4+1) and @
(X-L'+1 U---u Xr) \ (X,L n Xi+1). We say, X; N X;+1 separates

X1U---UXiandXi+1U---UXr. X
i

CER >
R
é
CEP
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Separation

Lemma @
Let Xi,...,X, be a path decomposition of graph G. For any bag X;,

there is no edge between (X; U---U X;) \ (X; N X;41) and ®
(Xi+1U---UXp)\ (X; N X41). Wesay, X; N X, separates

X1U---UXiandXi+1U---uXr. X
i
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R
é
CEP

I | I |
I 1 I 1

(X1 U... UXZ') \ (Xz ﬂXi+1) (Xi+1 U... UXT) \ (Xz ﬂXi+1)

Proof. Let u € (X1 U---UX;)\ (X;NX;41) and
vE(Xip1 U UXp)\ (Xs N Xig1).

e ud X,NXiy1=>uéd X;1U---UX,

e v X,NXip1=vgX7U---UX;

= There is no X with u,v € X; = (u,v) ¢ E



Separation

Lemma @
Let Xi,...,X, be a path decomposition of graph G. For any bag X;,

there is no edge between (X; U---U X;) \ (X; N X;41) and ®
(Xi+1U---UXp)\ (X; N X41). Wesay, X; N X, separates

X1U---UXiandXi+1U---uXr. X
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I | I |
I 1 I 1

(X1 U... UXZ') \ (Xz ﬂXi+1) (Xi+1 U... UXT) \ (Xz ﬂXi+1)

Proof. Let u € (X1 U---UX;)\ (X;NX;41) and
vE(Xip1 U UXp)\ (Xs N Xig1).
e ud X,NXiy1=>uéd X;1U---UX,
e v X,NXip1=vgX7U---UX;
= There is no X with u,v € X; = (u,v) ¢ E
By fixing the choices in X; N X; ;1 a problem usually splits into two independent subproblems



Dynamic programming over path
decomposition




Maximum Weight Independent Set

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,7} and S C X; let

DJi, S] = max. weight of independent set I C X; U---U X, where I N X; =S or —oo if it does not exist



Maximum Weight Independent Set

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,7} and S C X; let
DJi, S] = max. weight of independent set I C X; U---U X, where I N X; =S or —oo if it does not exist

We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 U---UX; =0 and S =0. Thus, D[i,S] =0



Maximum Weight Independent Set

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,7} and S C X; let

DJi, S] = max. weight of independent set I C X; U---U X, where I N X; =S or —oo if it does not exist

We compute D[i, S] based on the following case distinction.
Base case: i = 1. Then X1 U---UX; =0 and S =0. Thus, D[i,S] =0

Introduce bag: X; = X;_1 U {v}.
—00 if S is not independent,

D[i,S] = { D[i — 1,8\ {v}] + w(v) if S independent and v € S,
D[i —1,5] otherwise.



Maximum Weight Independent Set

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,7} and S C X; let
DJi, S] = max. weight of independent set I C X; U---U X, where I N X; =S or —oo if it does not exist
We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 U---UX; =0 and S =0. Thus, D[i,S] =0
Introduce bag: X; = X;_1 U {v}.

—00 if S is not independent,
D[i,S] = { D[i — 1,5\ {v}] + w(v) if S independent and v € S,
D[i —1,5] otherwise.
Forget bag: X; = X;_1 \ {v}. Then
—00 if S is not independent

D[i,S] = {max{D[i —1,5],DJ[i —1,SU{v}]} otherwise.



Maximum Weight Independent Set

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,7} and S C X; let
DJi, S] = max. weight of independent set I C X; U---U X, where I N X; =S or —oo if it does not exist
We compute D[i, S] based on the following case distinction.

Base case: i = 1. Then X1 U---UX; =0 and S =0. Thus, D[i,S] =0
Introduce bag: X; = X;_1 U {v}.

—00 if S is not independent,
D[i,S] = { D[i — 1,5\ {v}] + w(v) if S independent and v € S,
D[i —1,5] otherwise.
Forget bag: X; = X;_1 \ {v}. Then
—00 if S is not independent

D[i,S] = {max{D[i —1,5],DJ[i —1,SU{v}]} otherwise.

Running time: 2F - poly(n, k)

Correctness: blackboard



Order Picking




Warehouse graph

For the Order Picking problem we consider the following class of graphs:

e There are cross aisles i = 1,2,..., h that form disjoint paths
vgz), e v,(cz)). Usually h < 3
e Foreachi=1,2,...,h—1and j=1,2,...,k the vertices vy) and
o8 are connected by a path (an “aisle’”) where the inner vertices
of the path correspond to pick-up locations and are disjoint from

each other and from the cross-aisles

e There is one depot vertex d € V' at which the tour of the order
picker starts and ends

Source: https://arxiv.org/abs/1703.00699
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Warehouse graph

For the Order Picking problem we consider the following class of graphs:

e There are cross aisles i = 1,2,..., h that form disjoint paths
vgz), e v,(cz)). Usually h < 3
e Foreachi=1,2,...,h—1and j=1,2,...,k the vertices vy) and
o8 are connected by a path (an “aisle’”) where the inner vertices
of the path correspond to pick-up locations and are disjoint from

each other and from the cross-aisles

e There is one depot vertex d € V' at which the tour of the order
picker starts and ends

The pathwidth of a warehouse graph is at most i + 1 (see blackboard)

Source: https://arxiv.org/abs/1703.00699


https://arxiv.org/abs/1703.00699

Order Picking problem

Given a warehouse graph G = (V, E), edge lengths w : E — Z>, depot d € V, and pick-up locations P C V,
find a tour of minimal length that visits P U {d}. The tour may cross vertices and edges several times.


https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png

Order Picking problem

Given a warehouse graph G = (V, E), edge lengths w : E — Z>, depot d € V, and pick-up locations P C V,
find a tour of minimal length that visits P U {d}. The tour may cross vertices and edges several times.
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Order Picking problem

Given a warehouse graph G = (V, E), edge lengths w : E — Z>, depot d € V, and pick-up locations P C V,
find a tour of minimal length that visits P U {d}. The tour may cross vertices and edges several times.

KONINGSBERGA

Equivalent formulation

A multiset of edges I corresponds to the edges

crossed in some tour visiting exactly the vertices U if
and only if degy(u) is even and non-zero for each :
w € U and the graph (U, F') is connected. See

Eulerian tour for reference. &%
Equivalent to Order Picking: Find a multiset of S e
edges F' of minimal total length such that degp(v) ;”Lﬁg

is even for each v € V, degp(v) # 0 for each
v € PU{d}, and (U, F') is connected, where
U={veV|degp(v)#0}.

In an optimal multiset F', each edge appears zero Source:

times, once or twice. https://commons.wikimedia.org/wiki/File:Bridges_of_Konigsberg.png
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Dynamic program for Order Picking

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,r}, partition P of X; (P =0 if
X; = 0), and p € {zero,odd, even}¥i let D[i, P, p] be the minimum total distance of an edge multi-set F' s.t.
e For each v € X;, degp(v) is zero if p, = zero, odd if p, = odd and even and non-zero if p, = even
e Foreachv € (X1 U---UX;)\ X; we have degy(v) is even; if v € P U {d} then degp(v) is non-zero
e For each S € P it holds that S is connected in (V, F')

e If i < r then each connected component in (V, F’) contains a vertex v € X;; if i = r then (V, F') contains a
single connected component



Dynamic program for Order Picking

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,r}, partition P of X; (P =0 if
X; = 0), and p € {zero,odd, even}¥i let D[i, P, p] be the minimum total distance of an edge multi-set F' s.t.
e For each v € X;, degp(v) is zero if p, = zero, odd if p, = odd and even and non-zero if p, = even
e Foreachv € (X1 U---UX;)\ X; we have degy(v) is even; if v € P U {d} then degp(v) is non-zero
e For each S € P it holds that S is connected in (V, F')
e If i < r then each connected component in (V, F’) contains a vertex v € X;; if i = r then (V, F') contains a
single connected component

We compute D[, P, p] based on the following case distinction.

Base case: ¢ = 1. Then X; U---UX; =0. Thus, D[¢,P,p] =0



Dynamic program for Order Picking

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,r}, partition P of X; (P =0 if
X; = 0), and p € {zero,odd, even}¥i let D[i,P,p] be the minimum total distance of an edge multi-set F' s.t.

e For each v € X;, degp(v) is zero if p, = zero, odd if p, = odd and even and non-zero if p, = even
e Foreachv e (X1 U---UX;)\ X; we have deg-(v) is even; if v € P U {d} then degp(v) is non-zero
e For each S € P it holds that S is connected in (V, F')

e If i < r then each connected component in (V, F') contains a vertex v € X;; if i = r then (V, F') contains a

single connected component
We compute Di, P, p] based on the following case distinction.

Base case: i = 1. Then X; U---UX; =0. Thus, D[i,P,p] =0
Introduce bag: X; = X;_1 U {v}. Then D[i,P,p| = mings pr , {D[i — 1,P’,p'] + > cpr w(e)} where the
minimum is over all multisets F’ of edges between v and X; \ {v}, partitions P’ of X; 1 and
p’ € {zero,odd, even}Xi—1 with
e p, = p), + degp/(u) (with the natural operation on zero, odd, even) for each u € X;_1,
e p, consistent with degp/ (v),
e let S” C X, be the union of {v} and all S’ € P’ with (w,v) € F for some w € S’. Then
for each S € P either S C S or there exists S’ C P’ with S C §’.
e each edge e € E occurs at most twice in F'



Dynamic program for Order Picking

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,r}, partition P of X; (P =0 if
X; = 0), and p € {zero,odd, even}¥i let D[i,P,p] be the minimum total distance of an edge multi-set F' s.t.

e For each v € X;, degp(v) is zero if p, = zero, odd if p, = odd and even and non-zero if p, = even

e Foreachv e (X1 U---UX;)\ X; we have degy(v) is even; if v € P U {d} then degp(v) is non-zero

e For each S € P it holds that S is connected in (V, F')

e If i < r then each connected component in (V, F) contains a vertex v € X;; if i = r then (V, F') contains a
single connected component

We compute D[i, P, p] based on the following case distinction.

Base case: i = 1. Then X; U---UX; = 0. Thus, D[¢,P,p] =0
Introduce bag: X; = X;_; U {v}. Then D[i,P,p| = ming: pr ,{D[i — 1,P’,p'] + > cpr w(e)}
Forget bag: X; = X; 1\ {v}. Then D[i, P, p] = minp/ ,» D[i — 1,P’,p'], where the minimum is over all
partitions P’ of X;_1 and p’ € {zero, odd, even}¥i-1 with
o for each S € P there exists S’ € P’ with S C S’ and,
ph, = pu for each u € X;.
if v € PU{d} then pl # zero, (v does not get isolated if it must be visited)
if pl, # zero and i < r then {v} ¢ P’, (component of v does not get disconnected)



Dynamic program for Order Picking

Let X1,..., X, be nice path decomposition of width k. For each i € {1,...,r}, partition P of X; (P =0 if
X; = 0), and p € {zero,odd, even}¥i let D[i, P, p] be the minimum total distance of an edge multi-set F' s.t.
e For each v € X;, degp(v) is zero if p, = zero, odd if p, = odd and even and non-zero if p, = even
e Foreachv € (X1 U---UX;)\ X; we have degy(v) is even; if v € P U {d} then degp(v) is non-zero
e For each S € P it holds that S is connected in (V, F')

e If i < r then each connected component in (V, F’) contains a vertex v € X;; if i = r then (V, F') contains a
single connected component

We compute D[, P, p] based on the following case distinction.

Base case: ¢ = 1. Then X; U---UX; =0. Thus, D[¢,P,p] =0

Introduce bag: X; = X; 1 U{v}. Then D[i,P,p] = mings pr ,y{D[i = 1,P',p'] + 3 cpr w(e)}
Forget bag: X; = X; 1\ {v}. Then D[i, P, p] = minp/ ,» D[i — 1, P, p'],

Running time: k9*) . poly(n), since number of partitions is always at most k¥

Correctness: ommitted here (can be checked by straight-forward, but tedious calculation)



Experimental results

An optimized version of this dynamic program has been implemented in!

SCFS+ and SCF+: Commercial solvers on different ILP formulations
PDYN: FPT algorithm based on dynamic programming

Total Storage policy # aisles # cross-aisles # products
R 5 15 60 3 6 1 15 60 240
SCFS+ 18 18 0 1 4 13 1 2 15 0 0 18
SCF+ 136 88 48 19 34 83 51 41 44 0 26 110
PDYN 180 90 90 60 60 60 0 0 180 60 60 60
[ # instances [ 540 [ 270 [ 270 [ 180 [ 180 [ 180 [ 180 [ 180 [ 180 [ 180 [ 180 [ 180

Table shows number of unsolved instances with different sizes after 30 minutes.

1 Exact algorithms for the order picking problem. Pansart, Catusse , Cambazard. 2018.
https://arxiv.org/abs/1703.00699
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