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Today’s lecture

Generalization of previous techniques from paths to trees:

• Tree decomposition

• Maximum Weight Independent Set over tree decomposition



Dynamic programming over trees



Maximum Weight Independent Set

The previous dynamic program for Maximum Weight Independent Set on paths easily generalizes to trees.

Weighted Independent Set

• Input: Graph G = (V,E), weights w : V → Z≥0

• Output: Vertex set I ⊆ V with (u, v) /∈ E for each u, v ∈ I where
∑

v∈I w(v) is maximized

Dynamic program if G is a tree

• Root G in an arbitrary vertex, creating set of children child(v) ⊆ V , v ∈ V

• Let Tv be the subtree of v and descendants

• Dynamic table: D[v], v ∈ V , which should contain maximum weight of
independent set in Tv

• Recurrence (if v is chosen, none of the direct children can be):
D[v] = max

{
w(v) +

∑
u∈child(v)

∑
u′∈child(u) D[u′] ,

∑
u∈child(v) D[u]

}
• Proving correctness by induction is straight-forward

• Compute entries in order where children appear before parents. Then D[r]

contains optimal weight, solution can be output by easy modification
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Treewidth



Treewidth and tree decomposition

When is a graph almost a tree?

Tree decomposition

A tree decomposition of a graph G = (V,E) is a tree T = (VT , ET ) and a set of bags Xt, t ∈ VT , such that

• Xt ⊆ V for all t and
⋃

t∈VT
Xt = V

• For each (u, v) ∈ E there is some t ∈ VT with {u, v} ⊆ Xt

• For every v ∈ V , the set of bags containing v, i.e., {t ∈ VT : v ∈ Xt}, is a connected subtree of T

• The width of the decomposition is maxt∈VT
|Xt| − 1

• The treewidth of the graph, tw(G) is the smallest width over any decomposition. If G is a tree itself,
tw(G) = 1
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Nice tree decomposition

Nice tree decomposition

A tree decomposition T = (VT , ET ), (Xt)t∈VT
with a root r ∈ VT is nice Xr = ∅ and Xℓ = ∅ for each leaf

ℓ ∈ VT and for every non-leaf t ∈ VT either

• t has exactly one child t′ and Xt = Xt′ ∪ {v} for some v ∈ Xt \Xt′ (introduce node),

• t has exactly one child t′ and Xt = Xt′ \ {v} for some v ∈ Xt′ \Xt (forget node), or

• t has exactly two children t′, t′′ with Xt = Xt′ = Xt′′ (join node)

• We can in polynomial time transform a tree decomposition of width w to a nice path decomposition of the
same width

• A nice tree decomposition is easier to work with in dynamic programming

• When devising FPT algorithms in tw(G) we assume that a tree decomposition is given



Separation

Lemma

Let T = (VT , ET ), (Xt)t∈VT
be a tree decomposition of graph G. Let (a, b) ∈ ET be an edge of the

decomposition and let V
(a)
T ⊆ VT (V (b)

T ⊆ VT ) be the nodes of T on the side of a (resp., of b) of (a, b). Then
there is no edge between

⋃
t∈V

(a)
T

Xt \ (Xa ∩Xb) and
⋃

t∈V
(b)
T

Xt \ (Xa ∩Xb). We say Xa ∩Xb separates⋃
t∈V

(a)
T

Xt and
⋃

t∈V
(b)
T

Xt.

The proof is almost the same as for path decomposition. We omit it here

×

×

By fixing the choices in Xi ∩Xi+1 a problem usually splits into two independent subproblems
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Uses of tree decompositions

• Similar to path decomposition, we can design dynamic programs over tree decompositions. The algorithm
for Maximum Weight Independent Set generalizes in a straight-forward way, see exercises

• There is a large class of problems solvable in FPT time in tw(G), characterized by Courcelle’s Theorem, see
next lecture

Results for treewidth also imply to some other (easier to state) results. Some examples:

• Consider a planar graph G. Then tw(G) ≤ O(
√
n), see e.g. Corollary 7.24 from textbook. Many problems,

e.g., Maximum Weight Independent Set, can be solved in time 2O(tw(G))nO(1). Thus, on planar graphs
such problems admit subexponential time algorithms with running time 2O(

√
n), even though these

problems usually remain NP-hard also on planar graphs

• The treewidth of a graph is at most the size of the smallest vertex cover. Hence, an FPT algorithm for
Vertex Cover parameterized by treewidth implies an FPT algorithm parameterized by solution size
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