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Today'’s lecture

Generalization of previous techniques from paths to trees:

e Tree decomposition

e Maximum Weight Independent Set over tree decomposition



Dynamic programming over trees



Maximum Weight Independent Set

The previous dynamic program for Maximum Weight Independent Set on paths easily generalizes to trees.
Weighted Independent Set

e Input: Graph G = (V, E), weights w : V — Z>q
e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 37 _;w(v) is maximized
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The previous dynamic program for Maximum Weight Independent Set on paths easily generalizes to trees.
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Dynamic program if G is a tree

e Root G in an arbitrary vertex, creating set of children child(v) CV, v eV

e Let T, be the subtree of v and descendants



Maximum Weight Independent Set

The previous dynamic program for Maximum Weight Independent Set on paths easily generalizes to trees.
Weighted Independent Set

e Input: Graph G = (V, E), weights w : V' — Z>g
e Output: Vertex set I C V with (u,v) ¢ F for each w,v € I where 37 _;w(v) is maximized

Dynamic program if G is a tree

e Root G in an arbitrary vertex, creating set of children child(v) CV, v eV
e Let T, be the subtree of v and descendants

e Dynamic table: D[v], v € V, which should contain maximum weight of
independent set in Ty,

e Recurrence (if v is chosen, none of the direct children can be):
Dlv] = max {w(v) + Zuéchild(v) Zu’echild(u) D[] , Zuéchild(v) D[U]} O
e Proving correctness by induction is straight-forward

e Compute entries in order where children appear before parents. Then D|r]
contains optimal weight, solution can be output by easy modification



Treewidth



Treewidth and tree decomposition

When is a graph almost a tree?
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Treewidth and tree decomposition

When is a graph almost a tree?
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Tree decomposition

A tree decomposition of a graph G = (V, E) is a tree T' = (V, E7) and a set of bags X, t € Vi, such that
e X; CV forall t and UteVT Xe=V

For each (u,v) € E there is some ¢t € Vp with {u,v} C X,

e For every v € V, the set of bags containing v, i.e., {¢t € Vp : v € X;}, is a connected subtree of T’

e The width of the decomposition is max;cv, [ X¢| — 1

The treewidth of the graph, tw(G) is the smallest width over any decomposition. If G is a tree itself,
tw(G) =1




Nice tree decomposition

Nice tree decomposition

A tree decomposition T' = (Vr, E7), (Xt)tev,, with a root 7 € Vp is nice X, = () and X, = () for each leaf
£ € Vp and for every non-leaf t € Vi either

e ¢ has exactly one child ¢ and X; = X, U {v} for some v € X; \ X/ (introduce node),
e ¢ has exactly one child ¢’ and X; = X,/ \ {v} for some v € X,/ \ X; (forget node), or
e ¢ has exactly two children ¢/, ¢ with X; = X, = X,/ (join node)

e We can in polynomial time transform a tree decomposition of width w to a nice path decomposition of the
same width

e A nice tree decomposition is easier to work with in dynamic programming

When devising FPT algorithms in tw(G) we assume that a tree decomposition is given



Separation

Lemma

Let T'= (Vp, E1), (Xt)tcvy be a tree decomposition of graph G. Let (a,b) € Er be an edge of the

decomposition and let Vj(ﬁ) CVrp (ngb) C V) be the nodes of T' on the side of a (resp., of b) of (a,b). Then

there is no edge between Utev(”) Xt \ (XoNXyp) and UtEV(b) Xt \ (Xo N Xp). We say X, N X, separates
T T

Utevj(f‘) 2 el UtEVT(,b) Xe.

The proof is almost the same as for path decomposition. We omit it here




Separation

Lemma

Let T'= (Vp, E1), (Xt)tcvy be a tree decomposition of graph G. Let (a,b) € Er be an edge of the

decomposition and let Vj(ﬂa) CVrp (ngb) C V) be the nodes of T' on the side of a (resp., of b) of (a,b). Then

there is no edge between Utev(“) Xt \ (XoNXyp) and UtEV(b) Xt \ (Xo N Xp). We say X, N X, separates
T T

Utevq(f‘) Xz and UtEVT(,b) Xz.

The proof is almost the same as for path decomposition. We omit it here

By fixing the choices in X; N X;;1 a problem usually splits into two independent subproblems



Uses of tree decompositions

e Similar to path decomposition, we can design dynamic programs over tree decompositions. The algorithm
for Maximum Weight Independent Set generalizes in a straight-forward way, see exercises
e There is a large class of problems solvable in FPT time in tw(G), characterized by Courcelle’s Theorem, see

next lecture
Results for treewidth also imply to some other (easier to state) results. Some examples:

e Consider a planar graph G. Then tw(G) < O(y/n), see e.g. Corollary 7.24 from textbook. Many problems,
e.g., Maximum Weight Independent Set, can be solved in time 20t (G)pO() | Thus, on planar graphs
such problems admit subexponential time algorithms with running time 2°(vV™)  even though these
problems usually remain NP-hard also on planar graphs

e The treewidth of a graph is at most the size of the smallest vertex cover. Hence, an FPT algorithm for
Vertex Cover parameterized by treewidth implies an FPT algorithm parameterized by solution size
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