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Today'’s lecture

e Monadic second order logic
e Courcelle’s Theorem

e Optimization variant of Courcelle’s Theorem



Context

e On bounded treewidth graphs, problems can
often be solved by dynamic programming
e For what kind of problems does this work?
Informally: Courcelle’s Theorem gives an FPT
algorithm in treewidth for every problem that can be
written in the very expressive monadic second order

logic (which we introduce soon)

Bruno Courcelle

Source: https://www.labri.fr/perso/courcell/ActSci.html


https://www.labri.fr/perso/courcell/ActSci.html

Monadic second order logic



Informal overview

Monadic second order logic on graphs (MSO3) is a formalism to describe properties of a graph that we are
interested in checking.

Example:
3colorability = Ix, x,, xzcvpartition(X1, X2, X3) A indp(X1) A indp(X2) A indp(X3) , where
partition(X1, X2, X3) = Vyev [(v eXiNvé XoANv ¢ X3)
Vg XiANveXoAv ¢ X3)
v(u¢xlm¢x2mex3)]

lndp(X) = vu,vEX“adj (u7 U)



Formula and variables

A MSOg3 formula can have variables of one of the types

e single vertex: v €V

single edge: e € E
e vertex set: U C V
e edgeset: FC FE

The free variables z1, ...,z of a formula ¢ (if there are any) are written in parantheses after the function
name:

(@1, ax) =
We need to specify the type of the variables if it is not clear from the context.

A formula is evaluated on a given graph and specific values for the free variables. It evaluates to either true or
false. We say that a graph G equipped with values for the free variables satisfies a formular if it evaluates to
true



Constructions of formulas

Atomic formulas
e If v is a single vertex variable and U a vertex set variable, then the following is a MSOg formula: v € U
e If e is a single edge variable and I a edge set variable, then the following is a MSO2 formula: e € F'
e If x and y are variables of the same type, then the following is a MSO» formula: z =y

e If v is a single vertex variable and e is a single edge variable, then the following is a MSO2 formula:
inc(v,e)  (evaluates to true if and only if v is incident to e)
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Logical operators
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o d1(z1,...,%k) V P2(21,- -, Tk)
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Quantification
Let ¢(z1,...,xk) be a MSO2 formula where z; is
a free single vertex variable. Then
o Vo cvo(zy,...,xy) is a MSO2 formula with
free variables x1,...,zi—1,%it1,..., Tk
o 3, cvo(zy,...,xy) is a MSO2 formula with
free variables x1,...,zi—1,%it1,..., Tk

We say that z; is bounded. Same construction for
single edge, vertex set, and edge set variables
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Quantification

Let ¢(z1,...,xk) be a MSO2 formula where z; is
a free single vertex variable. Then
o Vo cvo(zy,...,xy) is a MSO2 formula with
free variables x1,...,zi—1,%it1,..., Tk
o 3, cvo(zy,...,xy) is a MSO2 formula with
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We say that z; is bounded. Same construction for
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The class of MSO2 formulas are exactly those that can be constructed using the rules above



Syntactic sugar

The following does not add to the expressive power of MSO2, but simplifies notation:

e write z ¢ X for ...

e write x # y for ...

o write adj(u,v) for ...

e write d,cu@(...,v,...) for ...
e write X C Y for ...

o write ¢1(z1,...,25) = ¢2(x1,...,2) for ...
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Courcelle’s Theorem




Courcelle’s Theorem

Let ¢(z1,...,x) be a MSO2 formula with free variables z1, ..., z;. We can in time f(||¢[|, tw(G)) - n check if
G satisfies ¢ for given values of z1,...,xzy, where f is some computable function and ||¢|| is the encoding
length of ¢.
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Courcelle’s Theorem (optimization variant)
Let ¢(Y1,...,Yp,21,...,2%) be a MSOg3 formula with free edge/vertex set variables Y7,...,Y}, and free
variables z1,...,x; of any type. Let c1,...,¢p € Z. For given values of x1,...,z, we can in time
F(loll, tw(Q)) - n find values for Y7,...,Y), that satisfy ¢(Y1,...,Yp, z1,...,2) on G, if any such values exist,
and maximize (or minimize)

c|Yi| 4+ ea|Ya| + -+ cp|Yp] -

Here, f is some computable function and ||| is the encoding length of ¢.
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We do not provide a proof of Courcelle’s Theorem in this course



Limitations

e The parameter dependendence f in Courcelle’'s theorem is astronomically large. Running time cannot even

be bounded by tw(G)+ |l
L2tW

2% n.
finite tower

Explicit dynamic programs usually have a much better running time

e MSO32 does not capture every property that can be checked in FPT time in treewidth. For example,
arithmetics (including counting) usually cannot be done in MSO,. Extensions exist that allow, for example,
parity checks of sets (useful for example in Order Picking), but these extensions are still very limited
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