Randomized Methods I: Color Coding

DM898: Parameterized Algorithms
Lars Rohwedder

Today'’s lecture

e Basics of randomized algorithms
e Longest Path via Color Coding

e Derandomization

Randomized algorithms

A randomized algorithm has access to random bits that it uses to solve a problem

o

, o
Types of randomized algorithm N, ’.~'\
e Las Vegas algorithm: always correct, but the running time depends on value of Jill “‘
random bits PEAT) 0 ‘..‘
——— °
e (one-sided) Monte Carlo algorithm (with false negatives): Running time -
deterministically bounded, always correct when returning YES, sometimes -
incorrect when returning NO!
e In this course, we only consider Monte Carlo algorithms. A useful algorithm should have a constant
probability p > 0, say 99%, of correctly responding on any YES-instance
e Randomization allows for elegant and simple algorithmic ideas, which often can be derandomized, leading
to similar guarantees deterministically
e Most intuitions transfer naturally to randomized algorithms: it is widely believed that RP # NP, i.e., that

no Monte Carlo algorithm solves an NP-hard problem with 99% success probability

1 there are also algorithms with two-sided errors or algorithms that are always correct when returning NO and

sometimes wrong when returning YES, but in our problems we usually compute a solution which can be checked
efficiently. So it is typically easy to avoid falsely returning YES for problems in NP

Boosting probability by repetition

Consider a Monte Carlo algorithm with probability of p of correctly responding in a YES-instance. By repeating

the algorithm and outputting NO only if it always returned NO, we can easily boost the probability of correct
return value:

The probability of returning the wrong answer after
[1/pIn(100)] = O(1/p) repetitions is < Bounding by exponential function

(a _p)(l/zﬂ In(100) < (efp)l/p-ln(l()o) < 1/100 Foreveryz € R: e* > 1+ x

Boosting probability by repetition

Consider a Monte Carlo algorithm with probability of p of correctly responding in a YES-instance. By repeating
the algorithm and outputting NO only if it always returned NO, we can easily boost the probability of correct
return value:

The probability of returning the wrong answer after

[1/pIn(100)] = O(1/p) repetitions is < Bounding by exponential function
(1 —p)“/p] 1n(100) < (e—p)l/p-ln(loo) <1/100 Forevery z e R: e > 1+
Examples:

e Consider a Monte Carlo algorithm that has a probability of 0.001% of responding correctly in a
YES-instance. By increasing the running time with a constant factor, we can make the probability 99%
~ takeaway: precise constant does not matter

e Consider a Monte Carlo algorithm that has a probability of 1/(2¥n!9) of responding correctly in a
YES-instance. By increasing the running time by a factor of O(2Fn'%) we can make the probability 99%

Longest Path

Longest Path

Longest Path problem

Input: Graph G = (V,E), ke N
Output: YES, if G contains a simple path of length k; NO, otherwise

M)

Longest Path

Longest Path problem

Input: Graph G = (V,E), ke N
Output: YES, if G contains a simple path of length k; NO, otherwise

)

Longest Path

Longest Path problem

Input: Graph G = (V,E), ke N
Output: YES, if G contains a simple path of length k; NO, otherwise

M)

Longest path is NP-hard

Does it have an FPT algorithm in k7

An easier problem

Multicolored Path problem

Input: Graph G = (V, E), k € N, (not necessarily proper)
vertex coloring ¢: V. — {1,2,...,k}

Qutput: YES, if G contains a simple path of length k where
each vertex has a different color; NO, otherwise

An easier problem

Multicolored Path problem

Input: Graph G = (V, E), k € N, (not necessarily proper)
vertex coloring ¢: V. — {1,2,...,k}

Qutput: YES, if G contains a simple path of length k where
each vertex has a different color; NO, otherwise

Dynamic program. For each v € V and 0 # S C {1,2,...,k} let

Dlv, 8] YES if there is a path starting in v that visits each C' € S exactly once, and no other colors
v, S| =
NO otherwise

An easier problem

Multicolored Path problem

Input: Graph G = (V, E), k € N, (not necessarily proper)
vertex coloring ¢: V. — {1,2,...,k}

Output: YES, if G contains a simple path of length k& where
each vertex has a different color; NO, otherwise

Dynamic program. For each v € V and 0 # S C {1,2,...,k} let

Dlv, 8] YES if there is a path starting in v that visits each C' € S exactly once, and no other colors
v, S| =
NO otherwise

Compute D[v, S| in the order of |S|. Base case:

YES if C =c(v)
NO otherwise

Dlv,{C}] = {

An easier problem

Multicolored Path problem

Input: Graph G = (V, E), k € N, (not necessarily proper)
vertex coloring ¢: V. — {1,2,...,k}

Output: YES, if G contains a simple path of length k& where
each vertex has a different color; NO, otherwise

Dynamic program. For each v € V and 0 # S C {1,2,...,k} let

Dlv, 8] YES if there is a path starting in v that visits each C' € S exactly once, and no other colors
v, S| =
NO otherwise

Compute D[v, S| in the order of |S|. Base case:

YES if C =c(v)
NO otherwise

Dlv,{C}] = {

Recurrence:
D[v, S] = {quN(v) D[u7 S \ {C(’U)}] if C(’l)) cS
NO

otherwise

An easier problem

Multicolored Path problem

Input: Graph G = (V, E), k € N, (not necessarily proper)
vertex coloring ¢: V. — {1,2,...,k}

Output: YES, if G contains a simple path of length k& where
each vertex has a different color; NO, otherwise

Dynamic program. For each v € V and 0 # S C {1,2,...,k} let

Dlv, 8] YES if there is a path starting in v that visits each C' € S exactly once, and no other colors
v, S| =
NO otherwise

Compute D[v, S| in the order of |S|. Base case:

YES if C =c(v)
NO otherwise

Dlv,{C}] = {

Recurrence:

Dlv, 8] = {\N/SGNM Dlu, S\ {c(v)}] ifc(v) €S

otherwise

Running time: 2 . nO1)

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c¢)

e return out

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c)

e return out

Observation 1: For NO instance, algorithm always returns NO
Observation 2: For YES instance with length k-path P, algorithm returns YES if vertices in P are colored with

different colors.

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c)

e return out

Observation 1: For NO instance, algorithm always returns NO

Observation 2: For YES instance with length k-path P, algorithm returns YES if vertices in P are colored with
different colors.

Probability of coloring P with different colors. Let u1,...,u; be the vertices in P. For every

Ci,...,Cr € {1,2,...,k} we have
1
]P’[c(ul) =Ch /\~-~/\c(uk) ZCk] = k;ik

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c)

e return out

Observation 1: For NO instance, algorithm always returns NO
Observation 2: For YES instance with length k-path P, algorithm returns YES if vertices in P are colored with
different colors.
Probability of coloring P with different colors. Let u1,...,u; be the vertices in P. For every
Ci,...,Cr € {1,2,...,k} we have
1
]P’[c(ul) =Ci1 A" A c(uk) = Ck] = k;ik

Out of the k* coloring of w1, ..., uy there are k! > (k/e)* colorings that are pairwise different.

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c)

e return out

Observation 1: For NO instance, algorithm always returns NO
Observation 2: For YES instance with length k-path P, algorithm returns YES if vertices in P are colored with
different colors.
Probability of coloring P with different colors. Let u1,...,u; be the vertices in P. For every
Ci,...,Cr € {1,2,...,k} we have
1

]P’[c(ul) =Ci1 A" A c(uk) = Ck] = k;ik
Out of the k* coloring of w1, ..., uy there are k! > (k/e)* colorings that are pairwise different. Thus, the
probability that P is colored with different colors is >

K\ 1 1*
(7) — > <7) < success probability
e) kk e

Reducing Longest Path to Multicolored Path

Algorithm for Longest Path
e For each v € V sample c(v) € {1,2,...,k} uniformly at random
e out < run DP for Multicolored Path instance (G, k, c)

e return out

Observation 1: For NO instance, algorithm always returns NO

Observation 2: For YES instance with length k-path P, algorithm returns YES if vertices in P are colored with
different colors.

Probability of coloring P with different colors. Let u1,...,u; be the vertices in P. For every
Ci,...,Cr € {1,2,...,k} we have
1
]P’[c(ul) =Ci1 A" A c(uk) = Ck] = k;ik
Out of the k* coloring of w1, ..., uy there are k! > (k/e)* colorings that are pairwise different. Thus, the
probability that P is colored with different colors is >
K\ 1 1*
(7) — > <7) <+ success probability
e) kk e
Repeating the algorithm O(e”) times success probability is constant and the resulting running time is
(2€)kn0(1)

Practical Applications

Bioinformatics

O Protein
@ Disease protein
— Protein-protein interaction

= Protein-disease association
Pathway component
P A. <

Given a graph that represents interactions between proteins in a
cell, analyzing the motifs, small induced subgraphs, gives
valuable insights in biology

Color Coding can be used to obtain statistics about occurrences
of specific graphs of size k =~ 10 as induced subgraph in large
graphs

Source: https://snap.stanford.edu/pathways/

Applications here require two extensions:

e finding specific small induced subgraph H (not only paths), known as subgraph isomorphism

e counting such subgraphs

Subgraph isomorphism can be solved in FPT time if tw(H) = O(1). This extends to counting

https://snap.stanford.edu/pathways/

Derandomization

Family of hash functions

e We want a perfect hash function f:{1,2,...,n} — {1,2,...,k} such that for an (unknown)
S C{1,2,...,n} with |S| = k we have f(a) # f(b) for all a,b € S,a#b

e It seems impossible to deterministically create such an f without knowing S: for every fixed hash function
f there is some S that does not satisfy the above

Family of hash functions

We want a perfect hash function f:{1,2,...,n} — {1,2,...,k} such that for an (unknown)

S C{1,2,...,n} with |S| = k we have f(a) # f(b) for all a,b € S,a#b

e It seems impossible to deterministically create such an f without knowing S: for every fixed hash function
f there is some S that does not satisfy the above

e Easier task: construct family F of hash functions, such that for each S C {1,2,...,n} with |S| = k there
exists some [€ F with property above

Then by increasing the running time with a factor of |F| (and the time to construct the hash functions) we
can derandomize Color Coding

Family of hash functions

We want a perfect hash function f:{1,2,...,n} — {1,2,...,k} such that for an (unknown)

S C{1,2,...,n} with |S| = k we have f(a) # f(b) for all a,b € S,a#b

e It seems impossible to deterministically create such an f without knowing S: for every fixed hash function
f there is some S that does not satisfy the above

e Easier task: construct family F of hash functions, such that for each S C {1,2,...,n} with |S| = k there
exists some [€ F with property above

Then by increasing the running time with a factor of |F| (and the time to construct the hash functions) we
can derandomize Color Coding

How large does || need to be?

Non-perfect hash function

Consider hash functions of the form f;(¢) =4 mod ¢ for ¢ € N

Lemma

Let S C {1,2,...,n} with |S| = k. There exists ¢ < O(k?logn) such that fq(a) # fq(b) for all a,b € S,a # bJ

Non-perfect hash function

Consider hash functions of the form f;(¢) =4 mod ¢ for ¢ € N

Lemma

Let S C {1,2,...,n} with |S| = k. There exists ¢ < O(k?logn) such that fq(a) # fq(b) for all a,b € S,a # bJ

Proof. Consider t =J], yc5.4<p(b—a) < nk*

e it is known that lem({1,2,...,m}) > 2™ form > 7
o thus, for some m < O(logt) = O(k?logn) we have lem({1,2,...,m}) > ¢
o it follows that there is ¢ < m < O(k?logn) that does not divide t

Non-perfect hash function

Consider hash functions of the form f;(¢) =4 mod ¢ for ¢ € N

Lemma

Let S C {1,2,...,n} with |S| = k. There exists ¢ < O(k?logn) such that fq(a) # fq(b) for all a,b € S,a # bJ

Proof. Consider t =J], yc5.4<p(b—a) < nk*

e it is known that lem({1,2,...,m}) > 2™ form > 7
o thus, for some m < O(logt) = O(k?logn) we have lem({1,2,...,m}) > ¢
o it follows that there is ¢ < m < O(k?logn) that does not divide ¢

Assume toward constradiction that fy(a) = f4(b) for some a,b € S

e Then (b — a) mod ¢ = 0. In other words, b — a is a multiple of ¢
e Thus, g divides t. A contradiction

Constructing a perfect hash function

For each ¢ < O(k?logn), U = {u1,uz, ..

define
1

2
fq,U(i) =

if foi) =
if fq(i) = uz
if fq(i) = ug
otherwise

Lury € {12, q)

Constructing a perfect hash function

For each ¢ < O(k%logn), U = {u1,uz,...,ur} C {1,2,...,q}

define ! 1
L foi) =w 2>:<) 1
2 if fo(i) = uz 3 2
4

3

IO S : :
koif fa() = wk : O(k2logn) g

k otherwise n

Let F ={fov:q€{1,2,...,m},U C{1,2,...,q},|U| = k}. Then F contains a perfect hash function for
each S C {1,2,...,n} with |S| = k and

k2(kE+1) | po(1) < JA(E+1) | po(1) if < \/@

< (kK*1 k+1 <
FI < (" logn)™" < AR+ < KARFD L po) if k> \/logn

Thus, we can obtain an FPT algorithm for Longest Path and other applications of Color Coding also
deterministically

This construction is not optimized. There exist more sophisticated hash function families that are much

smaller, see e.g. textbook

	TolDarkBlue Longest Path
	TolDarkBlue Practical Applications
	TolDarkBlue Derandomization

