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Today’s lecture

• Improvement over O(2n) for k-SAT via a random walk



Satisfiability problem

k-SAT

A k-SAT formula consists of n Boolean variables x1, . . . , xn and a logical AND over m clauses, each forming a
logical OR of at most k literals. A literal is a variable xi or a negated variable ¬xi.
Input: k-SAT formula
Output: YES, if there exists a satisfying assignment; NO, otherwise

Naive algorithm: O(2n) time. Can we do better?

We have seen in the exercises a O(1.74n) algorithm for 3-SAT via branching. Idea:

• For any satisfying assignment, x1 = x2 = · · · = xn = false or x1 = x2 = · · · = xn = true differs in at
most n/2 variables. Branch on which one is the case and select this as initial solution

• As long as the assignment is not satisfying (and the recursion depth is ≤ n/2), select a clause C that is not
satisfies and branch on a variable in C to flip

• Running time: O(kn/2) ← better than O(2n) iff k < 4

What about k ≥ 4?
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Walk-SAT

Algorithm

• start with a variable assignment x1, x2, . . . , xn sampled independently and uniformly at random

• repeat N times (or until all clauses are satisfied):
choose arbitrary clause C that is violated, sample a variable from C uniformly at random and flip it

Here, cutoff N needs to be decided. The procedure is repeated (each time with a new random starting solution)
to boost its probability of success

• Very similar to local search heuristics used on various problems in practice

• Walk-SAT is a serious approach for solving SAT in practice, see
e.g. https://www.cs.virginia.edu/~rmw7my/walksat/index.html

• Schöning analyzed this algorithm for k-SAT and proved that with N = 3n and O((2− 2/k)n) iterations
the algorithm succeeds with probability 0.99, see1

1 A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. Uwe Schöning. 1999

https://www.cs.virginia.edu/~rmw7my/walksat/index.html


A first analysis



Success bound of one iteration

• Let x∗ be a satisfying assignment and let x(0), x(1), x(2) . . . be the assignments in throughout the
iterations.

• Let d(x∗, x(j)) be the Hamming distance (number of different values) of the two assignments.

If clause C is not satisfied by x(j), then one of the k variables in C must be set differently in x∗ and x(j).
Hence, we have probability ≥ 1/k that d(x∗, x(j+1)) = d(x∗, x(j))− 1.

If this happens for each of the first d(x∗, x(0)) ≤ N iterations, then the algorithm succeeds. Thus, success
probability ≥ (

1

k

)d(x∗,x(0))

. . . similar to the running time of the branching algorithm. What can we say about d(x∗, x(0))?
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Distribution of initial assignment

• let S be the set of indices where x∗ and x(0) differ

• for each variable i ∈ {1, 2, . . . , n} we have i ∈ S and i /∈ S with equal probability

• Hence, for every T ⊆ {1, 2, . . . , n} we have P[S = T ] = 1/2n

It follows that for each i ∈ {0, 1, 2, . . . , n}

P[d(x∗, x(0)) = i] =
∑

T⊆{1,2,...,n}:|T |=i

P[S = T ] = 2−n
(n
i

)

With previous bound, success probability of WalkSAT is ≥
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Binomial Theorem

For every x, y ∈ R
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i

)
xiyn−i = (x+ y)n

Hence, after O((2− 2/(k + 1))n) iterations, the success probability is 0.99
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Careful analysis for 3-SAT



Random walk

We considered only the direct walk from i wrong variables to 0, but moving slightly less efficiently to the correct
assignment would also be fine.
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Goal: bound probability that a random walk arrives at 0 (after not too many steps), starting at i ∈ N and
moving −1 w.p. ≥ 1/3 and +1 w.p. ≤ 1− 1/3 each step.



Analyzing the random walk

Probability that a random walk arrives at 0 (after at most N = 3n steps), starting at i and moving +1 w.p.
≤ 1− 1/3 and −1 w.p. ≥ 1/3 each step.

≤ probability that a random walk arrives at 0 (after at most 3n steps), starting at i and moving +1 w.p.
= 1− 1/3 and −1 w.p. = 1/3 each step.

≤ probability that a random walk arrives at 0 after exactly 3i steps, starting at i and moving +1 w.p.
= 1− 1/3 and −1 w.p. = 1/3 each step.
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Wrapping up

One iteration of the algorithm takes polynomial time and has success probability ≥ Ω(1/
√
n · (3/4)n).

By repeating the algorithm O(
√
n · (4/3)n) times we obtain an algorithm for 3-SAT with constant success

probability and running time (
4

3

)n

· nO(1)

Based on similar (but technically more involved) ideas, the analysis can be generalized to any k ∈ N, leading to
an algorithm for k-SAT with running time (

2−
2

k

)n

· nO(1)



Strong Exponential Time Hypothesis



The previous algorithm’s running time is roughly O(2n) for k →∞. This motivates the following hypothesis:

Strong Exponential Time Hypothesis (SETH)

For every ϵ > 0 there exists k ∈ N such that k-SAT does not have an O(2(1−ϵ)n) time algorithm

SETH is even more controversial than ETH, since it is an even stronger hypothesis (see next slide), and of
course also not proven.

SETH has surprising implications for polynomial time solvable problems. For example, it can be shown that
SETH implies that there is no subquadratic (i.e., O(n1.999)-time) algorithm for Longest-Common-Subsequence.

Such results form the area of fine-grained complexity, for which we will see a few other examples with proofs
soon.



SETH implies ETH

Exponential Time Hypothesis (ETH)

There exists some constant ϵ > 0 such that there is
no O(2ϵn) time algorithm for 3-SAT

Strong Exponential Time Hypothesis (SETH)

For every ϵ > 0 there exists k ∈ N such that k-SAT
does not have an O(2(1−ϵ)n) time algorithm

To prove that SETH implies ETH, we need the general version of the Sparsification Lemma. We do not give a
proof of this here. It is similar to the proof for 3-SAT we have seen (but more involved)

Sparsification Lemma (general form)

Let k ∈ N. For every ϵ > 0 there is some ϵ′ > 0 such that if there exists an O(2ϵ
′(n+m)) time algorithm for

k-SAT, then there also exists an O(2ϵn) time algorithm for it

Proof that SETH implies ETH.

• Assume for every ϵ > 0 there is an algorithm for 3-SAT with running time O(2ϵn)

• Consider a k-SAT formula with n variables and m clauses. Replace every clause l1 ∨ l2 ∨ · · · ∨ lh,
3 < h ≤ k, by 2- and 3-clauses (l1 ∨ y1), (¬y1 ∨ l2 ∨ y2), (¬y2 ∨ l3 ∨ y3), . . . , (¬yh−1 ∨ lh) where
y1, . . . , yh−1 are new variables

• The resulting 3-SAT formular is equivalent to the k-SAT formula and has n′ ≤ n+m(k − 1) variables
• Let ϵ > 0. Then by the previous assumptions and with ϵ′ := ϵ/(k − 1), we can solve the instance above in

time O(2ϵ
′n′

) ≤ O(2ϵ(n+m)), which by the Sparsification Lemma leads to e.g. an O(2n/2) time algorithm
for k-SAT for any k = O(1), contradicting SETH
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