Fine-Grained Complexity

DM898: Parameterized Algorithms
Lars Rohwedder

Today'’s lecture

e Overview Fine-Grained Complexity

e Subquadratic hardness for Orthogonal Vectors

Subquadratic hardness for Diameter

Pseudopolynomial time algorithms and hardness for Subset Sum

e Subquadratic hardness for String problems

Context

Classical perspective: Categorize problems into NP-complete and P

NP-complete

"hard”

This course (thus far): Nuances in complexity of NP-complete problems (FPT, XP, mildly exponential
algorithms) and hardness

Now: For polynomial time solvable problems, determine tight running time bounds necessary to solve them
(linear time, quadratic time,...)

...and connections between these theories

Fine-grained complexity

e Within P it seems that some problems can be solved faster than others (e.g. O(n) vs O(n?))

e Classical complexity theory does not give means to prove lower bounds on exponent of polynomial

e On the other hand, reductions that show that a certain running time for some problem implies some
running time are straight-forward

e Fine-grained complexity is a young research field about establishing lower bounds for many problems
using a low number of well justified hypotheses

e Research on lower bounds goes hand-in-hand with attempts to improve (non-tight) running times

Some popular hypotheses:
Strong Exponential Time Hypothesis (SETH)

For every € > 0 there exists k € N such that k-SAT does not have an O(2(1=9)™) time algorithm

3-SUM Hypothesis (3SUM)

The following problem (3-SUM) cannot be decided in O(n2~9) time for any § > 0: Given A, B,C C Z,
|A| = |B| = |C| =n, are there a € A,b€ B,c € C witha+b+c=0?

All-Pair-Shortest-Path Hypothesis (APSP)

The following problem (APSP) cannot be solved in O(n?~?) time for any 6 > 0: Given an undirected graph
with non-negative edge weights find the length of the shortest path between any pair of vertices

Consequences of the SETH

Orthogonal Vectors

Orthogonal Vectors Problem

Input: A, B C {0,1}¢ with |A| = |B| =n
Output: YES, if there are @ € A,b € B with a"b = ?:1 a; -b; = 0. NO, otherwise

Equivalent formulation: given universe U of size d and two families of sets X',) over U, are there
XeX,)YeYwith XnY =07

The problem is easily solvable in time O(n? - d) or n - 20(®) s this optimal?

Theorem

Unless the SETH is false, there is no n2=%d°() time algorithm for Orthogonal Vectors

Proof: Blackboard

Diameter

Diameter Problem

“Compute the longest shortest path”

Input: a connected graph G = (V, E) and k € N

OQutput: YES, if for every u,v € V there is a path of length at most k
between u and v; NO, otherwise

Quadratic time algorithm: For each vertex compute in O(m) time the shortest path to every other vertex
using BFS. Then check if any of these lengths is > k. Total running time: O(nm) < O(m?)

Theorem

Unless the SETH is false, there is no O(m?~%) time algorithm for the Diameter Problem

Proof: Blackboard

Pseudopolynomial time algorithms for Subset Sum

Subset Sum Problem

Input: s1,...,s, €N, T €N
Output: YES, if there exist I C {1,...,n} with >°,; s; = T; NO otherwise

The classical dynamic programming algorithm solves the problem in O(nT). Is this optimal?

Theorem (see!)

Unless the SETH is false, there is no nC(1) . T1=9 time algorithm for any 6 > 0

We do not give a proof of the theorem in this course.
On the other hand, a randomized (n + T) - 1og®™") (n + T') algorithm has since been discovered?. Techniques:

e Sumset computation via fast Fourier transform (FFT): for A, B C {0,1,...,T} we can compute in time
O(TlogT) their sumset A@ B={a+b:a€ Abe B}
e Color-Coding

We only show the following weaker result for k-SUM (Subset Sum with the additional constraint |I| = k): there
is an algorithm that solves k-SUM in time f(k) - (n +T) - log®™) (n + T') for some function f. See blackboard

1 SETH-based lower bounds for subset sum and bicriteria path. Abboud, Bri Hermelin, Shab 2018

2 A i dopolynomial time algorithm for subset sum. Bringmann. 2017

Longest Common Subsequence

Longest Common Substring Problem

Input: strings a[l]a[2] - - -a[n], b[1]b[2] - - - b[n] over alphabet X, k € N
Output: YES, if there exists ¢, j with a[d]a[i + 1] - - a[i + k] = b[j]b[j + 1] - - - b[j + k]; NO, otherwise

A naive algorithm requires O(n2k) time. Using dynamic programming this can be improved to O(n?). Using
suffix trees even O(n) time is possible (detail omitted).

Longest Common Subsequence Problem
Input: strings a[l]a[2] - - - a[n], b[1]b[2] - - - b[n| over alphabet X, k € N

Output: YES, if there exists 11 < i2 < - < ig,j1 < j2 < -+ < j with ali1]a[iz] - - - alix] = b[j1]b[j2] - - - bjk];
NO, otherwise

Again, dynamic programming can be used to solve the problem in O(n?) time. Can this be improved as well?

Theorem (see! or?)
Unless the SETH is false, there is no O(n2~%) time algorithm for Longest Common Subsequence for any § > 0 J

We do not give a proof of this theorem in this course.

lQJ N diti. b

| lower ds for string probl and dy ic time warping. Bringmann, Kiinnemann. 2015

2 Quadratic-time hardness of LCS and other sequence similarity measures. Abboud, Backurs, Vassilevska Williams

Regular expression pattern matching

Pattern Matching Problem

Input: String a[l]a[2] - - - a[n] over alphabet X, regular
expression R

Output: YES, if there is a substring ali|ali + 1] - - - a[j]
that matches R; NO, otherwise

While general regular expressions are more expressive,
we introduce here only a restricted variant for which the

hardness already holds. The regular expressions we
consider are recursively defined as follows:
e For each a € X, (a) is a regular expression that matches b[1]---b[m]| if and only if m =1 and b[1] = a
e For regular expressions R1, R2, (R1|R2) is a regular expression that matches b[1] - - - b[m] if and only if Ry
or Ry matches b[1]---b[m)]
e For regular expressions R1, Ra, (R1Rz2) is a regular expression that matches b[1] - - - b[m] if and only if there
is some 1 < j < m such that Ry matches b[1]---b[j] and R matches b[j + 1] - - - b[m)]

Theorem

Unless the SETH is false, no algorithm solves pattern matching in time O((n + |R|)2~?%) for any § > 0

Proof: blackboard

	TolDarkBlue Consequences of the SETH

