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Today’s lecture

• Sunflower lemma

• Preprocessing in practice (for linear programming)



Sunflower Lemma



Context

• we have seen some problem-specific kernels (for Vertex Cover and Edge Clique Cover)

• the textbook also contains several examples of general kernelization techniques that can be applied to
many problems (usually requiring some additional ideas). These are based on finding and exploiting specific
structures occuring in the input (often graphs or set systems)

• as a clean example, we look at the Sunflower Lemma. Other examples in the textbook are Crown
Decomposition (Chapter 2.3), Expansion Lemma (Chapter 2.4), Representative Sets (Chapter 12.3),. . .



The Sunflower Lemma is relevant to problem that involve set systems, i.e., a family A of sets over a universe U .

Definition (Sunflower)

For a core set Y , we say that sets S1, . . . , Sk ⊋ Y are a
sunflower if Si ∩ Sj = Y for all i ̸= j. We call
S1 \ Y, . . . , Sk \ Y the petals of the sunflower.

Sunflower Lemma

Let A be a family of sets (without duplicates) over a universe
U , such that each set in A has cardinality exactly d. If
|A| > d!(k − 1)d then A contains a sunflower with k petals and
such a sunflower can be computed in time polynomial in |A|,
|U |, and k.

Proof on blackboard.
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Kernel for d-Hitting Set

d-Hitting Set problem

Let A be a family of sets over a universe U , where each set has cardinality at most d and let k ∈ N. The goal
of the d-Hitting Set problem is to find H ⊆ U with |H| ≤ k such that H ∩A ̸= ∅ for all A ∈ A.

If A is sufficiently large, then it must contain a large sunflower Y , S1, . . . , Sk+1. A hitting set of cardinality k

must contain a vertex in Y .

Reduction rule

For each d′ ≤ d try to apply Sunflower Lemma on sets in A with cardinality exactly d′. If we find sunflower with
k + 1 petals Y, S1, . . . , Sk+1, then set A′ = A \ {S1, . . . , Sk+1} ∪ Y and U ′ =

⋃
A∈A′ A. Return

instance (U ′,A′).

Kernel with ≤ d!kd · d sets: apply reduction rule until exhaustion. When no more sunflowers with k + 1 petals
are found, then for all d′ ≤ d the number of sets of cardinality d′ in A must be at most

d′!kd
′
≤ d!kd.

Thus,
|A| ≤ d!kd · d.
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Preprocessing in practice



Using data reduction routines before applying main algorithm is a promising approach for most problems.

For practical examples, we focus on integer linear programming, due to its expressive power, probably the
most important problem in Operations Research. Preprocessing is a crucial element in the state-of-the-art:

Progress on ILP solvers during 2000-2020

[...] branch-and-cut has replaced branch-and-bound as the basic computational tool [...] The other
most significant developments in the solvers are much improved preprocessing/presolving and many
new ideas for primal heuristics. The result has been a speed-up of several orders of magnitude in the
codes. The other major change has been the widespread use of decomposition algorithms, in particular
column generation (branch-(cut)-and-price) and Benders’ decomposition.

Preface of textbook “Integer Programming” by Wolsey



(Integer) Linear programming

A linear program consists of a set of variables x1, . . . , xn and a mathematical system of the following form:

• Each variable has a domain that describes which values are allowed. Allowed domains are upper and/or
lower bounds, e.g. −1 ≤ x1 ≤ 2 and optional integrality requirement. Examples: x1 ∈ R≥0,
x2 ∈ Z, x3 ∈ {0, 1}

• An optional objective that describes a linear function in the variables to be optimized and an optimization
direction (max or min). Example: maxx1 + 2x2

• There are one or more constraints. These enforce a relationship (≤, =, or ≥) between two affine linear
functions over the variables. Examples: 2x1 + 5 ≥ 3− x2

If all variables have integer domain, we call the system an integer linear program (ILP). If none of the
variables have integer domain, we call the system a continuous linear program or just linear program (LP). If
both integer and continuous variables appear, we call it a mixed-integer linear program.

Complexity of linear programming

• ILPs can easily model NP-hard problems ⇒ ILP is NP-hard

• Continuous LPs can be solved very efficiently both in practice and theory

Examples on blackboard.
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Preprocessing for linear programming

Goals:

• Reduce number of variables (columns)

• Reduce number of constraints (rows)

• Tightening variable bounds and constraints

Example output of Gurobi solver including statistics
about preprocessing



Example: merging parallel variables

Consider the following linear program

max 2x1 + x2−x3 − x4

5x1 − 2x2 + 8x3 + 8x4 ≤ 15

8x1 + 3x2 − x3 − x4 ≥ 9

x1 + x2 + x3 + x4 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3 ≤ 10

0 ≤ x4 ≤ 2

Variables x3, x4 are parallel (same coefficients in
objective and all constraints)

⇝

Merging x3, x4 into single
variable x3:

max 2x1 + x2−x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3 ≤ 12
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Example: tightening bounds

Continuing with the same linear program

max 2x1 + x2−x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3

Constraint 1 implies

5x1 ≤ 15 + 2x2 − 8x3 ≤ 9

Similarly,

8x3 ≤ 15 + 2x2 − 5x1 ≤ 17.

⇝

Tightening the bounds:

max 2x1 + x2−x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤
9

5

0 ≤ x2 ≤ 1

1 ≤ x3 ≤
17

8
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Example: removing redundant constraints
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9

5
+ 1 +

17

8
=

197

40
< 6

⇝
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Example: fixing variables
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⇝
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Preprocessing specific for integer linear programming
Consider now an integer linear program

max 2x1 + x2−x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥
40

7

0 ≤ x1 ≤
9

5

0 ≤ x2 ≤ 1

1 ≤ x3 ≤
17

8

x1, x2, x3 ∈ Z

We can replace upper bounds 9/5 and 17/8 by
⌊9/5⌋ and ⌊17/8⌋.
Similarly, replace right-hand side of Constraint 2 by
⌈40/7⌉ (because coefficients are integral).

⇝

By rounding bounds:

max 2x1 + x2−x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 7

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

1 ≤ x3 ≤ 2

x1, x2, x3 ∈ Z

Why make bounds tighter

• Can lead to further simplifications (see e.g. redundant constraint example)

• Strengthens LP relaxation ⇝ faster Branch-and-Bound (see later lectures)
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Summary of linear programming preprocessing

• We have seen examples of how a linear program can be simplified by simple arguments

• These arguments can easily be turned into generic rules

• Many other and more sophisticated preprocessing rules for linear programming exist, see for example
Wolsey, Section 7.6
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