Preprocessing and Kernelization I

DM898: Parameterized Algorithms
Lars Rohwedder

Today'’s lecture

e Sunflower lemma

e Preprocessing in practice (for linear programming)

Sunflower Lemma

Context

e we have seen some problem-specific kernels (for Vertex Cover and Edge Clique Cover)

e the textbook also contains several examples of general kernelization techniques that can be applied to
many problems (usually requiring some additional ideas). These are based on finding and exploiting specific
structures occuring in the input (often graphs or set systems)

e as a clean example, we look at the Sunflower Lemma. Other examples in the textbook are Crown
Decomposition (Chapter 2.3), Expansion Lemma (Chapter 2.4), Representative Sets (Chapter 12.3),. ..

The Sunflower Lemma is relevant to problem that involve set systems, i.e., a family A of sets over a universe U.

Definition (Sunflower)

For a core set Y, we say that sets Sy,...,S; 2 Y are a
sunflower if S; N S; =Y for all i # j. We call
S1\Y,...,Sk \ Y the petals of the sunflower.

The Sunflower Lemma is relevant to problem that involve set systems, i.e., a family A of sets over a universe U.

Definition (Sunflower)

For a core set Y, we say that sets Sy,...,S; 2 Y are a
sunflower if S; N S; =Y for all i # j. We call
S1\Y,...,Sk \ Y the petals of the sunflower.

Sunflower Lemma

Let A be a family of sets (without duplicates) over a universe
U, such that each set in A has cardinality exactly d. If

|A| > d!(k — 1)? then A contains a sunflower with k petals and
such a sunflower can be computed in time polynomial in |A],
|U], and k.

Proof on blackboard.

Kernel for d-Hitting Set

d-Hitting Set problem

Let A be a family of sets over a universe U, where each set has cardinality at most d and let kK € N. The goal
of the d-Hitting Set problem is to find H C U with |H| < k such that HN A # () for all A € A.

Kernel for d-Hitting Set

d-Hitting Set problem

Let A be a family of sets over a universe U, where each set has cardinality at most d and let kK € N. The goal
of the d-Hitting Set problem is to find H C U with |H| < k such that HN A # () for all A € A.

If A is sufficiently large, then it must contain a large sunflower Y, S1,...,Sk4+1. A hitting set of cardinality k
must contain a vertex in Y.

Reduction rule

For each d’ < d try to apply Sunflower Lemma on sets in A with cardinality exactly d’. If we find sunflower with
k+1 petals Y, S1,..., Spq1, then set A" = A\ {S1,...,Sk41}UY and U' = U ¢4 A- Return
instance (U’, A").

Kernel for d-Hitting Set

d-Hitting Set problem

Let A be a family of sets over a universe U, where each set has cardinality at most d and let kK € N. The goal
of the d-Hitting Set problem is to find H C U with |H| < k such that HN A # () for all A € A.

If A is sufficiently large, then it must contain a large sunflower Y, S1,...,Sk4+1. A hitting set of cardinality k
must contain a vertex in Y.

Reduction rule

For each d’ < d try to apply Sunflower Lemma on sets in A with cardinality exactly d’. If we find sunflower with
k+1 petals Y, S1,..., Spq1, then set A" = A\ {S1,...,Sk41}UY and U' = U ¢4 A- Return
instance (U’, A").

Kernel with < d'k® . d sets: apply reduction rule until exhaustion. When no more sunflowers with k + 1 petals
are found, then for all d’ < d the number of sets of cardinality d’ in A must be at most

Ak < Ak,

Thus,
|A] < dlk? - d.

Preprocessing in practice

Using data reduction routines before applying main algorithm is a promising approach for most problems.

For practical examples, we focus on integer linear programming, due to its expressive power, probably the
most important problem in Operations Research. Preprocessing is a crucial element in the state-of-the-art:

Progress on ILP solvers during 2000-2020

[...] branch-and-cut has replaced branch-and-bound as the basic computational tool [...] The other
most significant developments in the solvers are much improved preprocessing/presolving and many
new ideas for primal heuristics. The result has been a speed-up of several orders of magnitude in the
codes. The other major change has been the widespread use of decomposition algorithms, in particular
column generation (branch-(cut)-and-price) and Benders' decomposition.

Preface of textbook “Integer Programming” by Wolsey

(Integer) Linear programming

A linear program consists of a set of variables x1,...,z, and a mathematical system of the following form:

e Each variable has a domain that describes which values are allowed. Allowed domains are upper and/or
lower bounds, e.g. —1 < 1 < 2 and optional integrality requirement. Examples: z1 € R>,
o € Z,x3 € {0,1}

e An optional objective that describes a linear function in the variables to be optimized and an optimization

direction (max or min). Example: maxzq + 2z2

e There are one or more constraints. These enforce a relationship (<, =, or >) between two affine linear
functions over the variables. Examples: 2z1 +5 > 3 — x2

If all variables have integer domain, we call the system an integer linear program (ILP). If none of the
variables have integer domain, we call the system a continuous linear program or just linear program (LP). If
both integer and continuous variables appear, we call it a mixed-integer linear program.

(Integer) Linear programming

A linear program consists of a set of variables x1,...,z, and a mathematical system of the following form:

e Each variable has a domain that describes which values are allowed. Allowed domains are upper and/or
lower bounds, e.g. —1 < 1 < 2 and optional integrality requirement. Examples: z1 € R>,
o € Z,x3 € {0,1}

e An optional objective that describes a linear function in the variables to be optimized and an optimization

direction (max or min). Example: maxzq + 2z2

e There are one or more constraints. These enforce a relationship (<, =, or >) between two affine linear

functions over the variables. Examples: 2z1 +5 > 3 — x2

If all variables have integer domain, we call the system an integer linear program (ILP). If none of the
variables have integer domain, we call the system a continuous linear program or just linear program (LP). If
both integer and continuous variables appear, we call it a mixed-integer linear program.

Complexity of linear programming
e |LPs can easily model NP-hard problems = ILP is NP-hard

e Continuous LPs can be solved very efficiently both in practice and theory

(Integer) Linear programming

A linear program consists of a set of variables x1,...,z, and a mathematical system of the following form:

e Each variable has a domain that describes which values are allowed. Allowed domains are upper and/or
lower bounds, e.g. —1 < 1 < 2 and optional integrality requirement. Examples: z1 € R>,
o € Z,x3 € {0,1}

e An optional objective that describes a linear function in the variables to be optimized and an optimization

direction (max or min). Example: maxzq + 2z2

e There are one or more constraints. These enforce a relationship (<, =, or >) between two affine linear
functions over the variables. Examples: 2z1 +5 > 3 — x2

If all variables have integer domain, we call the system an integer linear program (ILP). If none of the
variables have integer domain, we call the system a continuous linear program or just linear program (LP). If
both integer and continuous variables appear, we call it a mixed-integer linear program.

Complexity of linear programming
e |LPs can easily model NP-hard problems = ILP is NP-hard

e Continuous LPs can be solved very efficiently both in practice and theory

Examples on blackboard.

Preprocessing for linear programming

38166 integer (3288

le+80]

Objective range
Bounds range
Rt e
QRHS range
olve removed 3118 rows and 34593 columns
olve time: 8.8

Goals:

e Reduce number of variables (columns)

P
P

Presolved: 22954 rows, 14206 columns, 74771 nonzeros
variable types: 3790 continuous, 10416 integer (16034 binary)

Root relaxation: objective 3 56: 7@ iterations, 8.12 seconds

e Reduce number of constraints (rows)
. . . . | Current Node | Objective Bounds] Work

e Tightening variable bounds and constraints Obj Depth Intinf | Incumbent BestBd Gap | It/Node Time

8 3999560.63 8 269 - 3999568.63

9 4003616.91 9 413 - 4003616.91

Example output of Gurobi solver including statistics

about preprocessing

Example: merging parallel variables

Consider the following linear program

max 2x] + xo—T3 — T4
5x1 — 2x9 4+ 8x3 + 8x4 < 15
8r1 +3x9 —x3 —x14 > 9
1 +x2+23+74 <6
0<z; <3
0<xz2<1
1 <23 <10
0<z4 <2

Variables x3, x4 are parallel (same coefficients in
objective and all constraints)

Example: merging parallel variables

Consider the following linear program

max 2x] + xo—T3 — T4
5x1 — 2x9 4+ 8x3 + 8x4 < 15
8r1 +3x9 —x3 —x14 > 9
1 +x2+23+74 <6
0<z; <3
0<xz2<1
1 <23 <10
0<z4 <2

Variables x3, x4 are parallel (same coefficients in
objective and all constraints)

Merging x3, x4 into single
variable x3:
max 2x, + xo—x3

5x1 — 2x9 4+ 8x3 < 15
8r1 +3x2 —x3>9
1 +x2+23 <6
0<z <3
0<z<1

1 <23 <12

Example: tightening bounds

Continuing with the same linear program

max 2r1 + r2—x3
bx1 — 2x9 + 8x3 < 15
8r1 +3x2 —x3>9
z1 +x2+23 <6
0<z; <3
0<z2 <1
1< 23

Constraint 1 implies
521 <154+ 229 — 823 <9
Similarly,

8xr3 < 154 2x2 — bxy < 17.

Example: tightening bounds

Continuing with the same linear program

max 2r1 + r2—x3

bx1 — 2x9 + 8x3 < 15

8r1 +3x2 —x3>9
z1 +x2+23 <6

Tightening the bounds:

max 2x1 + xo—1x3
5x1 — 2x9 4+ 8x3 < 15
8r1 +3x2 —x3 > 9

0<z <3
0<z2<1 A 1 +x2+23 <6
1 <3 0§x1§§
Constraint 1 implies 0<22<1
5z1 < 154 2x0 —8x3 <9 lézsgl—;

Similarly,

8xr3 < 154 2x2 — bxy < 17.

Example: removing redundant constraints

Continuing with the same linear program

max 2x, + xo—x3

bxr1 — 2x2 + 8x3 < 15

8r1 +3x9 —x3>9

r1+x2+23<6

9
5

1
17
8

0<x;

IN

0<xo

IN

1< z3

IN

3rd constraint is redundant due to variable bounds:

taatas< o414 2T ¢
X xT X — —_— = —
PR TEs =y 8 40

Example: removing redundant constraints

Continuing with the same linear program

max 2x, + xo—x3
bxr1 — 229 + 8x3 < 15
8r1 +3x9 —x3>9

r1+x2+23<6
9
5
1
17
8

0<x;

IN

0<xo

IN

1< z3

IN

3rd constraint is redundant due to variable bounds:

taatas< o414 2T ¢
X xT X — —_— = —
PR TEs =y 8 40

Removing redundant
constraint:

max 2x, + ro—x3
5x1 — 2x9 4+ 8x3 < 15
8xr1 + 3x2 —x3 > 9

0<a; <

(en)
A
S
IA

H
A
3
IN
oo‘: = oo

Example: fixing variables

Continuing with the same linear program

max 2x1 + xo—x3
5x1 — 2x9 + 8x3 < 15
8r1 +3x9 —x3>9

9
0<z < -
5
0<za<1
17
1<as< o
8

Increasing zo improves objective and makes all
constraints less tight

Example: fixing variables

Continuing with the same linear program

max 2x1 + T2 —2x3 Fix z2 to its upper bound

5x1 — 2x9 + 8x3 < 15 max 2r1 + 1—x3
8r1 +3x9 —x3>9 5x1 + 8xz < 17
nglgg PO 8r1 —x3 > 6
9
0<z3<1 Ogﬂflgg
17 17
1< < — 1 <23 < —
S T3 S S > L3 > 8

Increasing zo improves objective and makes all
constraints less tight

Preprocessing specific for integer linear programming

Consider now an integer linear program

max 2r1 + r2—x3

bxr1 — 2x9 + 8x3 <

8x1 + 3x2 — 3

Y

(=)
A
&

A

[e=)
N
8
(V)
IN

1< z3

IN
S ER AR

m
N

T1,x2,T3

We can replace upper bounds 9/5 and 17/8 by
19/5] and [17/8].

Similarly, replace right-hand side of Constraint 2 by
[40/7] (because coefficients are integral).

Preprocessing specific for integer linear programming

Consider now an integer linear program

max 2r1 + r2—x3

5z1 — 222 + 823 < 15 By rounding bounds:
40
821 + 3wy — 23 2 ra max 2z + v2—x3
0<a <2 5wy — 2a9 + 823 < 15
- 5
8xr1 +3x2 —x3 > 7
0< o<1 S 1 2—x3 2>
1< < 17 pemet
$3§ 0<z2<1
z1,22,23 €72 1<z3 <2

We can replace upper bounds 9/5 and 17/8 by 1,22, 23 € Z

19/5] and [17/8].
Similarly, replace right-hand side of Constraint 2 by
[40/7] (because coefficients are integral).

Preprocessing specific for integer linear programming

Consider now an integer linear program

max 2r1 + r2—x3

5z1 — 222 + 823 < 15 By rounding bounds:
40
81 + 322 —x3 2 r max 2x1 + xo—x3
0<a <2 521 — 222 + 8z3 < 15
- 5
8xr1 +3x2 —x3 > 7
0< o<1 S 1 2 —x3 2
1< a5 < pemet
1'3§ 0<z2<1
z1,22,23 €72 1<z3 <2

We can replace upper bounds 9/5 and 17/8 by 1,22, 23 € Z
19/5] and [17/8].
Similarly, replace right-hand side of Constraint 2 by
[40/7] (because coefficients are integral).
Why make bounds tighter
e Can lead to further simplifications (see e.g. redundant constraint example)

e Strengthens LP relaxation ~~ faster Branch-and-Bound (see later lectures)

Summary of linear programming preprocessing

e We have seen examples of how a linear program can be simplified by simple arguments

e These arguments can easily be turned into generic rules

e Many other and more sophisticated preprocessing rules for linear programming exist, see for example
Wolsey, Section 7.6

	TolDarkBlue Sunflower Lemma
	TolDarkBlue Preprocessing in practice

