Branching |

DM898: Parameterized Algorithms
Lars Rohwedder

Today'’s lecture

e Formalism of branching
e Vertex Cover

e Closest String

Next lecture: Branch-and-Bound (branching for ILP in practice)

Formalism of branching

Branching algorithms for decision problems

By “branching” on some decision, from an instance I we generate several easier instances I1,..., 1y, £ > 2, that
we recurse on until we reach trivial instances. Formally, we require that Iy, ..., I, satisfy

1. They can be generated from I in polynomial time

2. At least one of Iy,..., I, is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1,...,I; are each smaller than of I the £ is bounded.
Sufficient for FPT algorithms: k(I1),k(I2),...,k(l¢) < k(I) and € = g(k(I)) for some function g

Branching algorithms for decision problems

By “branching” on some decision, from an instance I we generate several easier instances I1,..., 1y, £ > 2, that
we recurse on until we reach trivial instances. Formally, we require that Iy, ..., I, satisfy

1. They can be generated from I in polynomial time

2. At least one of Iy,..., I, is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1,...,I; are each smaller than of I the £ is bounded.
Sufficient for FPT algorithms: k(I1),k(I2),...,k(l¢) < k(I) and € = g(k(I)) for some function g

Enumeration Tree O @
Execution of a branching algorithm is often v1 E% y €s

represented by an enumeration tree

e The nodes are the instances, instance is vy €8 ”356 S vi €S '
v4 € @

child if generated from other instance

e Edges are labeled with the decisions
X X v v

Enumeration tree for vertex cover of size 2

Branching algorithms for decision problems

By “branching” on some decision, from an instance I we generate several easier instances I1,..., 1y, £ > 2, that
we recurse on until we reach trivial instances. Formally, we require that Iy, ..., I, satisfy

1. They can be generated from I in polynomial time
2. At least one of Iy,..., I, is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1,...,I; are each smaller than of I the £ is bounded.

Sufficient for FPT algorithms: k(I1),k(I2),...,k(l¢) < k(I) and € = g(k(I)) for some function g
@]
Execution of a branching algorithm is often v1 E% y €s

represented by an enumeration tree

e The nodes are the instances, instance is vy €8 ”356 S vi €S '
v4 € @

Enumeration Tree

child if generated from other instance

e Edges are labeled with the decisions
X X v v

Enumeration tree for vertex cover of size 2

Why can this be more efficient than complete enumeration, e.g., of all (Z) sets? Sometimes decisions leading to
infeasibility can be identified and ignored early. For example, vi,va ¢ S is never explored in example above.

Vertex Cover revisited

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.

Choose some v € V. Then

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose some v € V. Then

e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose some v € V. Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)

e Or add entire neighborhood of v to vertex cover, via recursion on
Ir = (G — N[v], k — deg(v))

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)

e Or add entire neighborhood of v to vertex cover, via recursion on
I = (G — N[v], k — deg(v))

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)

e Or add entire neighborhood of v to vertex cover, via recursion on
I = (G — N[v], k — deg(v))

If maximum degree is < 2, instance is trivial and we can directly solve it

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover. @
Choose v = argmax,, - deg(v). Then

e Either add v to vertex cover, via recursion on I1 = (G — v,k — 1) e'@

e Or add entire neighborhood of v to vertex cover, via recursion on
Iy = (G = N[v], k — deg(v)) @

If maximum degree is < 2, instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:

Tk)<T(k—1)+T(k—3) k>3 T(k)=1 ifk<2

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)
e Or add entire neighborhood of v to vertex cover, via recursion on
Is = (G — N[v],k — deg(v))

If maximum degree is < 2, instance is trivial and we can directly solve it

—@
Roh

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:

Tk)<T(k—1)+T(k—3) k>3 T(k) =1

Solving the recurrence

We want to bound T'(k) by c* for some c. It should satisfy:

’ ’ ’
ck: < Ck =il -‘er —3 vk’

if k<2

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)
e Or add entire neighborhood of v to vertex cover, via recursion on
Is = (G — N[v],k — deg(v))

If maximum degree is < 2, instance is trivial and we can directly solve it

—@
Roh

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:

Tk)<T(k—1)+T(k—3) k>3 T(k) =1

Solving the recurrence

We want to bound T'(k) by c* for some c. It should satisfy:

’ ’ !
F <L v & A<+

if k<2

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)
e Or add entire neighborhood of v to vertex cover, via recursion on
Is = (G — N[v],k — deg(v))

If maximum degree is < 2, instance is trivial and we can directly solve it

—@
Roh

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:

Tk)<T(k—1)+T(k—3) k>3 T(k) =1

Solving the recurrence

We want to bound T'(k) by c* for some c. It should satisfy:

if k<2

3

K<L v e S<P+l o« (taking ¢ as small as possible) ¢3 =¢? +1

Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover. @
Choose v = argmax,, - deg(v). Then

e Either add v to vertex cover, via recursion on I1 = (G — v,k — 1) e'@

e Or add entire neighborhood of v to vertex cover, via recursion on
Iy = (G = N[v], k — deg(v)) @

If maximum degree is < 2, instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:
Tk)<T(k-1)+T(k-3) ifk>3 Tk)y=1 ifk<2
Solving the recurrence
We want to bound T'(k) by c* for some c. It should satisfy:
K<L v e S<P+l o« (taking ¢ as small as possible) ¢3 =¢? +1

Using computer tools we can solve the polynomial equation obtaining ¢ = 1.4656

Total number of nodes in enumeration tree is at most 27°(k) ~ Running time: T(k) - n©1) < 1.4656% - n© (1)

Closest String

Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Example

3 ={a,b,c}
7 ¢ a b a ¢ b a b a b a
o a a b a ¢ b a ¢ a b a
3 a a ¢ a a b a ¢ a b b
4 ¢ b b a a b ¢ ¢ ¢ b a
zs a b b a ¢ b a b a ¢ ¢

Y

Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Example
3 ={a,b,c}
7 ¢ a b a ¢ b a b a b a
o a a b a ¢ b a ¢ a b a
3 a a ¢ a a b a ¢ a b b
4 ¢ b b a a b ¢ ¢ ¢ b a
zs a b b a ¢ b a b a ¢ ¢
y a a b a ¢ b a ¢ a b a < majority vote

Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Example
3 ={a,b,c}
d(zi,y)

Ty €€ a b a ¢ b a b a b a 2
o a a b a ¢ b a ¢ a b a 0
rz3 a a ¢ a a b a ¢ a b b 3
z4 ¢ b b a a b ¢ ¢ ¢ b a 5
zs a b b a ¢ b a b a ¢ ¢ 4
y a a b a ¢ b a ¢ a b a

Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Example
3 ={a,b,c}
d(zi,y)

Ty € a b a ¢ b a b a b a 3
ro a a b a ¢ b a ¢ a b a 1
r3 a a ¢ a a b a ¢ a b b 4
4 ¢ b b a a b ¢ ¢ ¢ b a 4
s a b b a ¢ b a b a ¢ c 3
y a b b a ¢ b a ¢ a b a

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

1
x2
3
T4
5

» O N O

0ol 0 v © 0
v o oL L o
o|lo o 0O T T
I I S VR VR VR)
ojlo v o 0 0
oT|T T T T T
vl 0L L L
o|jT 0O 0 0 T
[I Vo W VIR VR)
ol T T T T
Lvlio L T O W

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

1
x2
3
T4
5

» O N O

0ol 0 v © 0
v o oL L o
o|lo o 0O T T
I I S VR VR VR)
ojlo v o 0 0
oT|T T T T T
vl 0L L L
o|jT 0O 0 0 T
[I Vo W VIR VR)
ol T T T T
Lvlio L T O W

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

o Ifd(y',z;) <dforalli=1,...,k, return YES

1
x2
3
T4
5

» O N O

0ol o0 v v 0
v o oL L o
o|lo o 0O T T
I I S VR VR VR)
0ojlo v o 0 0
oT|T T T T T
vl 0L L L
o|jT 0O 0 0O T
[N I VR o W VR VI)
o|l06 T T T T
Lvlio L T O W

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

o Ifd(y',z;) <dforalli=1,...,k, return YES
e Otherwise let z € {z1,...,z} with d(y’,2) > d. If d = 0 return NO

1
x2
3
T4
5

» O N O

0ol o0 v v 0
v o oL L o
o|lo o 0O T T
I I S VR VR VR)
0ojlo v o 0 0
oT|T T T T T
vl 0L L L
o|jT 0O 0 0O T
[N I VR o W VR VI)
o|l06 T T T T
Lvlio L T O W

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

o Ifd(y',z;) <dforalli=1,...,k, return YES
e Otherwise let z € {z1,...,z} with d(y’,2) > d. If d = 0 return NO

e Take any d + 1 positions P where y’ and z differ. P must contain at least one position j where y[j] = z[j]
(if there exists solution y)

d(y/7 xl)
x1 C a b a ¢ b a b a b a 0
xo a a b a ¢ b a ¢ a b a 2
3 a a ¢ a a b a ¢ a b b 5 <z
x4 ¢ b b a a b ¢ ¢ ¢ b a 5
xzs a b b a ¢ b a b a ¢ ¢ 4
yYy ¢ a b a ¢ b a b a b a

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

Ifd(y',xz;) <dforalli=1,...,k, return YES
e Otherwise let z € {z1,...,z} with d(y’,2) > d. If d = 0 return NO

Take any d + 1 positions P where y’ and z differ. P must contain at least one position j where y[j] = z[j]
(if there exists solution y)

e Branch over j € P, obtaining instance (vy"/,d' — 1,z1,...,zy,d) where
pen yl[jl] if j/ #3j
y'i'T=q9"" e,
z[j] ifj =
d(y’, ;)
x1 C a b a ¢ b a b a b a 0
ry a a b a ¢ b a ¢ a b a 2
r3 a a ¢ a a b a ¢ a b b 5 <z
x4 ¢ b b a a b ¢ ¢ ¢ b a 5
s a b b a ¢ b a b a ¢ ¢ 4
yYy a a b a ¢ b a b a b a

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch
Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,y’) < d' and d(y,z;) < dforalli=1,... k.
Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)
o If d(y',z;) <dforalli=1,...,k, return YES

e Otherwise let z € {z1,...,z} with d(y/,2) > d. If d = 0 return NO
e Take any d + 1 positions P where 3y’ and z differ. P must contain at least one position j where y[j] = z[j]

(if there exists solution y)

e Branch over j € P, obtaining instance (vy"/,d' — 1,z1,...,zy,d) where
pen yl[jl] if 5/ #j
v =97 g
2] i =

Running time analysis

Size of enumeration tree T'(d,d’):
d+1)-T(d,d —1) ifd >0
gy < @D T@E =) >
1 ifd =

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch
Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,y’) < d' and d(y,z;) < dforalli=1,... k.
Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)
o If d(y',z;) <dforalli=1,...,k, return YES

e Otherwise let z € {z1,...,z} with d(y/,2) > d. If d = 0 return NO
e Take any d + 1 positions P where 3y’ and z differ. P must contain at least one position j where y[j] = z[j]

(if there exists solution y)

e Branch over j € P, obtaining instance (vy"/,d' — 1,z1,...,zy,d) where
pen yl[jl] if 5/ #j
v =97 g
2] i =

Running time analysis

Size of enumeration tree T'(d,d’):
d+1)-T(d,d —1) ifd >0
gy < @D T@E =) >
1 ifd =

~ T(d,d') < (d+ 1)

Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch
Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,y’) < d' and d(y,z;) < dforalli=1,... k.
Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)
o If d(y',z;) <dforalli=1,...,k, return YES

e Otherwise let z € {z1,...,z} with d(y/,2) > d. If d = 0 return NO
e Take any d + 1 positions P where 3y’ and z differ. P must contain at least one position j where y[j] = z[j]

(if there exists solution y)

e Branch over j € P, obtaining instance (vy"/,d' — 1,z1,...,zy,d) where
pen yl[jl] if 5/ #j
v =97 g
2] i =

Running time analysis

Size of enumeration tree T'(d,d’):

T d,)<{(d+1)~T(d,d'—1) if d’ > 0

1 ifd =0

v T(d,d’) < (d+1)4" ~ Running time: T(d,d) - n®® < (d+1)¢ . nOD

	TolDarkBlue Formalism of branching
	TolDarkBlue Vertex Cover revisited
	TolDarkBlue Closest String

