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Today’s lecture

• Formalism of branching

• Vertex Cover

• Closest String

Next lecture: Branch-and-Bound (branching for ILP in practice)



Formalism of branching



Branching algorithms for decision problems

By “branching” on some decision, from an instance I we generate several easier instances I1, . . . , Iℓ, ℓ ≥ 2, that
we recurse on until we reach trivial instances. Formally, we require that I1, . . . , Iℓ satisfy

1. They can be generated from I in polynomial time

2. At least one of I1, . . . , Iℓ is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1, . . . , Iℓ are each smaller than of I the ℓ is bounded.
Sufficient for FPT algorithms: k(I1), k(I2), . . . , k(Iℓ) < k(I) and ℓ = g(k(I)) for some function g

Enumeration Tree

Execution of a branching algorithm is often
represented by an enumeration tree

• The nodes are the instances, instance is
child if generated from other instance

• Edges are labeled with the decisions
X X ✓ ✓

v1 ∈ S v2 ∈ S

v2 ∈ S
v4 ∈ S

v3 ∈ S
v4 ∈ S

v1

v2 v3

v4

Enumeration tree for vertex cover of size 2

Why can this be more efficient than complete enumeration, e.g., of all
(n
k

)
sets? Sometimes decisions leading to

infeasibility can be identified and ignored early. For example, v1, v2 /∈ S is never explored in example above.
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Vertex Cover revisited



Branching on vertices

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose some v ∈ V . Then

• Either add v to vertex cover, via recursion on I1 = (G− v, k − 1)

• Or add entire neighborhood of v to vertex cover, via recursion on
I2 = (G−N [v], k − deg(v))

If maximum degree is ≤ 2, instance is trivial and we can directly solve it

v1

v2 v3

v4

To analyze the running time, bound maximum number of leafs T (k) in enumeration tree:

T (k) ≤ T (k − 1) + T (k − 3) if k ≥ 3 T (k) = 1 if k ≤ 2

Solving the recurrence

We want to bound T (k) by ck for some c. It should satisfy:

ck
′
≤ ck

′−1 + ck
′−3 ∀k′ ⇔ c3 ≤ c2 + 1 ⇐ (taking c as small as possible) c3 = c2 + 1

Using computer tools we can solve the polynomial equation obtaining c = 1.4656

Total number of nodes in enumeration tree is at most 2T (k) ⇝ Running time: T (k) · nO(1) ≤ 1.4656k · nO(1)
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Closest String



Problem definition

Input: strings x1, . . . , xk of length L over an alphabet Σ, d ∈ Z≥0

Output: decide if there exists string y with d(xi, y) ≤ d for all i = 1, . . . , k

Here, d(x, y) is the Hamming distance, the number of characters where the strings differ

Example

Σ = {a, b, c}

x1 c a b a c b a b a b a
x2 a a b a c b a c a b a
x3 a a c a a b a c a b b
x4 c b b a a b c c c b a
x5 a b b a c b a b a c c
y
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Problem definition

Input: strings x1, . . . , xk of length L over an alphabet Σ, d ∈ Z≥0

Output: decide if there exists string y with d(xi, y) ≤ d for all i = 1, . . . , k

Here, d(x, y) is the Hamming distance, the number of characters where the strings differ

Example

Σ = {a, b, c}
d(xi, y)

x1 c a b a c b a b a b a 3
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Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution y′ and reduce distance to actual solution y with every branch

Formally each recursive call has input (y′, d′, x1, . . . , xk, d).
Goal: decide if there exists y with d(y, y′) ≤ d′ and d(y, xi) ≤ d for all i = 1, . . . , k.

Start with (y′ = x1, d′ = d, x1, . . . , xd, d) (equivalent to original problem)

• If d(y′, xi) ≤ d for all i = 1, . . . , k, return YES

• Otherwise let z ∈ {x1, . . . , xk} with d(y′, z) > d. If d′ = 0 return NO

• Take any d+ 1 positions P where y′ and z differ. P must contain at least one position j where y[j] = z[j]

(if there exists solution y)

• Branch over j ∈ P , obtaining instance (y′′, d′ − 1, x1, . . . , xk, d) where

y′′[j′] =

{
y′[j′] if j′ ̸= j

z[j] if j′ = j
.

d(y′, xi)

x1 c a b a c b a b a b a 0
x2 a a b a c b a c a b a 2
x3 a a c a a b a c a b b 5

← z

x4 c b b a a b c c c b a 5
x5 a b b a c b a b a c c 4
y′ c a b a c b a b a b a
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Formally each recursive call has input (y′, d′, x1, . . . , xk, d).
Goal: decide if there exists y with d(y, y′) ≤ d′ and d(y, xi) ≤ d for all i = 1, . . . , k.

Start with (y′ = x1, d′ = d, x1, . . . , xd, d) (equivalent to original problem)

• If d(y′, xi) ≤ d for all i = 1, . . . , k, return YES
• Otherwise let z ∈ {x1, . . . , xk} with d(y′, z) > d. If d′ = 0 return NO
• Take any d+ 1 positions P where y′ and z differ. P must contain at least one position j where y[j] = z[j]

(if there exists solution y)
• Branch over j ∈ P , obtaining instance (y′′, d′ − 1, x1, . . . , xk, d) where

y′′[j′] =

{
y′[j′] if j′ ̸= j

z[j] if j′ = j
.

Running time analysis

Size of enumeration tree T (d, d′):

T (d, d′) ≤
{
(d+ 1) · T (d, d′ − 1) if d′ > 0

1 if d′ = 0

⇝ T (d, d′) ≤ (d+ 1)d
′
⇝ Running time: T (d, d) · nO(1) ≤ (d+ 1)d · nO(1)
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