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Today'’s lecture

e Formalism of branching
e Vertex Cover

e Closest String

Next lecture: Branch-and-Bound (branching for ILP in practice)



Formalism of branching



Branching algorithms for decision problems

By “branching” on some decision, from an instance I we generate several easier instances I1,..., 1y, £ > 2, that
we recurse on until we reach trivial instances. Formally, we require that Iy, ..., I, satisfy

1. They can be generated from I in polynomial time

2. At least one of Iy,..., I, is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1,...,I; are each smaller than of I the £ is bounded.
Sufficient for FPT algorithms: k(I1),k(I2),...,k(l¢) < k(I) and € = g(k(I)) for some function g
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By “branching” on some decision, from an instance I we generate several easier instances I1,..., 1y, £ > 2, that
we recurse on until we reach trivial instances. Formally, we require that Iy, ..., I, satisfy

1. They can be generated from I in polynomial time
2. At least one of Iy,..., I, is YES-instance if and only if I is YES-instance

3. The complexities (or sizes) of I1,...,I; are each smaller than of I the £ is bounded.

Sufficient for FPT algorithms: k(I1),k(I2),...,k(l¢) < k(I) and € = g(k(I)) for some function g
@]
Execution of a branching algorithm is often v1 E% y €s

represented by an enumeration tree

e The nodes are the instances, instance is vy €8 ”356 S vi €S '
v4 € @

Enumeration Tree

child if generated from other instance

e Edges are labeled with the decisions
X X v v

Enumeration tree for vertex cover of size 2

Why can this be more efficient than complete enumeration, e.g., of all (Z) sets? Sometimes decisions leading to
infeasibility can be identified and ignored early. For example, vi,va ¢ S is never explored in example above.



Vertex Cover revisited
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Choose some v € V. Then
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Branching algorithm
Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)
e Or add entire neighborhood of v to vertex cover, via recursion on
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If maximum degree is < 2, instance is trivial and we can directly solve it
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Input: graph G, bound k on size of vertex cover.
Choose v = argmax,, - deg(v). Then
e Either add v to vertex cover, via recursion on I} = (G — v,k — 1)
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K<L v e S<P+l o« (taking ¢ as small as possible) ¢3 =¢? +1




Branching on vertices

Branching algorithm
Input: graph G, bound k on size of vertex cover. @
Choose v = argmax,, - deg(v). Then

e Either add v to vertex cover, via recursion on I1 = (G — v,k — 1) e'@

e Or add entire neighborhood of v to vertex cover, via recursion on
Iy = (G = N[v], k — deg(v)) @

If maximum degree is < 2, instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T'(k) in enumeration tree:
Tk)<T(k-1)+T(k-3) ifk>3 Tk)y=1 ifk<2
Solving the recurrence
We want to bound T'(k) by c* for some c. It should satisfy:
K<L v e S<P+l o« (taking ¢ as small as possible) ¢3 =¢? +1

Using computer tools we can solve the polynomial equation obtaining ¢ = 1.4656

Total number of nodes in enumeration tree is at most 27°(k) ~ Running time: T(k) - n©1) < 1.4656% - n© (1)



Closest String




Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ
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Problem definition

Input: strings x1,...,x} of length L over an alphabet ¥, d € Z>
Output: decide if there exists string y with d(z;,y) < dforalli=1,...,k

Here, d(z,y) is the Hamming distance, the number of characters where the strings differ

Example
3 ={a,b,c}
d(zi,y)

Ty € a b a ¢ b a b a b a 3
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r3 a a ¢ a a b a ¢ a b b 4
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Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

1
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Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)
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Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch

Formally each recursive call has input (v/,d’,z1,...,zp,d).
Goal: decide if there exists y with d(y,vy’) < d’ and d(y,z;) < d foralli=1,... k.

Start with (y' = z1,d’ =d,z1,...,z4,d) (equivalent to original problem)

o Ifd(y',z;) <dforalli=1,...,k, return YES
e Otherwise let z € {z1,...,z} with d(y’,2) > d. If d = 0 return NO

e Take any d + 1 positions P where y’ and z differ. P must contain at least one position j where y[j] = z[j]
(if there exists solution y)

d(y/7 xl)
x1 C a b a ¢ b a b a b a 0
xo a a b a ¢ b a ¢ a b a 2
3 a a ¢ a a b a ¢ a b b 5 <z
x4 ¢ b b a a b ¢ ¢ ¢ b a 5
xzs a b b a ¢ b a b a ¢ ¢ 4
yYy ¢ a b a ¢ b a b a b a



Branching algorithm for Closest String (parameter d)

Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch
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Idea: start with some initial solution 3’ and reduce distance to actual solution y with every branch
Formally each recursive call has input (v/,d’,z1,...,zp,d).
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