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Today’s lecture

Using LP relaxations for FPT algorithms

• LP-based kernel for Vertex Cover

• Next lecture: FPT algorithms for “general” ILPs



LP relaxation of Vertex Cover
ILP formulation

min
∑
v∈V

xv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

LP relaxation

min
∑
v∈V

xv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ [0, 1] ∀v ∈ V

Lemma

Let x∗ be an optimal solution to the LP relaxation of Vertex Cover. There exists a minimum vertex cover S∗

with
{v ∈ V : x∗

v > 1/2} ⊆ S∗ ⊆ V \ {v ∈ V : x∗
v < 1/2} .

Proof: blackboard

Reduction rule

Solve the LP relaxation and obtain solution x∗. Return (G− {v ∈ V : x∗
v ̸= 1/2}, k − |{v ∈ V : x∗

v > 1/2}|).

Proof of safeness: blackboard

Kernel with 2k vertices: Apply previous rule. Then remaining instance has optimal fractional solution
(1/2, 1/2, . . . , 1/2). If |V | > 2k (then optimal solution ≥ optimal fractional solution > k) return NO.
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How much can we trust an LP relaxation?

The previous example shows in particular that for Vertex Cover we can “trust” the LP relaxation on integral
variables. Is this a general rule (for all ILPs)?

Unfortunately not

Consider the following Knapsack instance: There are 5 items of profit 20 and weight 2 and one item of profit 1

and weight 1. ILP formulation:

max 20x1 + 20x2 + 20x3 + 20x4 + 20x5 + x6

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + x6 ≤ 5

x1, x2, x3, x4, x5 ∈ {0, 1}

The optimal fractional solution is x1 = 1, x2 = 1, x3 = 1/2, x4 = 0, x5 = 0, x6 = 0.

The optimal integer solution is x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 0, x6 = 1.

The relaxation is mistaken about x6. LP relaxations hopeless in general?

Not entirely. Fractional solution is still “similar” to integer solution. We will quantify this next lecture
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Branch-and-Bound on misguided LP relaxation

This example is also a problem for Branch-and-Bound solvers

A

B C

x3 = 0 x3 = 1

D E F G

x4 = 0 x4 = 1

x2 = 0
x2 = 1

...

max 20x1 + 20x2 + 20x3 + 20x4 + 20x5 + x6

2x1 + 2x2 + 2x3 + 2x4 + 2x5 + x6 ≤ 5

x1, x2, x3, x4, x5, x6 ∈ {0, 1}

LP solution:
x1 x2 x3 x4 x5 x6

A: 1 1 1/2 0 0 0

B: 1 1 0 1/2 0 0
C: 1 1/2 1 0 0 0
D: 1 1 0 0 1/2 0
E: 1 1/2 0 1 0 0
F: 1 0 0 1/2 0 0
G: 1/2 1 1 0 0 0

⇝ Branching has almost no effect
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Computational experiment

Using different sizes of this example in (naive) Branch-and-Bound solver

max 20x1 + · · ·+ 20xn + xn+1

2x1 + · · ·+ 2xn + xn+1 ≤ 2k + 1

x1, . . . , xn+1 ∈ {0, 1}

Running time
n k time (sec.) nodes
20 5 3.24 54,262
20 6 6.97 116,278
20 7 12.24 203,400
20 8 17.83 293,928
20 9 21.68 352,714
20 10 21.74 352,714
25 5 13.86 23,228
25 6 38.96 657,798
25 7 92.71 1,562,273
30 5 42.7 736,284
30 6 160.15 2,629,573

Note: Modern ILP solvers would avoid this particular example, e.g., by smart preprocessing, but similar
scenarios could still occur


