

Today's lecture

Using LP relaxations for FPT algorithms

- LP-based kernel for Vertex Cover
- \bullet Next lecture: FPT algorithms for "general" ILPs

ILP formulation

$$\min \sum_{v \in V} x_v$$

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \in \{0, 1\}$$
 $\forall v \in V$

$$\min \sum_{v \in V} x_v$$

$$x_u + x_v \ge 1$$

$$x_u + x_v \ge 1$$
 $\forall (u, v) \in E$

$$x_v \in [0, 1]$$
 $\forall v \in V$

ILP formulation

LP relaxation

$$\min \sum_{v \in V} x_v$$

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \in \{0, 1\} \qquad \forall v \in V$$

$$\min \sum_{v \in V} x_v$$

$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$

$$x_v \in [0, 1] \qquad \forall v \in V$$

Lemma

Let x^* be an optimal solution to the LP relaxation of Vertex Cover. There exists a minimum vertex cover S^* with

$$\{v \in V : x_v^* > 1/2\} \subseteq S^* \subseteq V \setminus \{v \in V : x_v^* < 1/2\}$$
.

Proof: blackboard

ILP formulation

LP relaxation

$$\begin{aligned} \min \sum_{v \in V} x_v & \min \sum_{v \in V} x_v \\ x_u + x_v &\geq 1 & \forall (u, v) \in E \\ x_v &\in \{0, 1\} & \forall v \in V \end{aligned} \qquad \begin{aligned} x_u + x_v &\geq 1 & \forall (u, v) \in E \\ x_v &\in [0, 1] & \forall v \in V \end{aligned}$$

Lemma

Let x^* be an optimal solution to the LP relaxation of Vertex Cover. There exists a minimum vertex cover S^* with

$$\{v \in V : x_v^* > 1/2\} \subseteq S^* \subseteq V \setminus \{v \in V : x_v^* < 1/2\}$$
.

Proof: blackboard

Reduction rule

Solve the LP relaxation and obtain solution x^* . Return $(G - \{v \in V : x_v^* \neq 1/2\}, k - |\{v \in V : x_v^* > 1/2\}|)$.

Proof of safeness: blackboard

ILP formulation

$$\begin{aligned} \min \sum_{v \in V} x_v & \min \sum_{v \in V} x_v \\ x_u + x_v &\geq 1 & \forall (u, v) \in E \\ x_v &\in \{0, 1\} & \forall v \in V & x_v \in [0, 1] & \forall v \in V \end{aligned}$$

Lemma

Let x^* be an optimal solution to the LP relaxation of Vertex Cover. There exists a minimum vertex cover S^* with

$$\{v \in V : x_v^* > 1/2\} \subseteq S^* \subseteq V \setminus \{v \in V : x_v^* < 1/2\} \ .$$

Proof: blackboard

Reduction rule

Solve the LP relaxation and obtain solution x^* . Return $(G - \{v \in V : x_v^* \neq 1/2\}, k - |\{v \in V : x_v^* > 1/2\}|)$.

Proof of safeness: blackboard

Kernel with 2k vertices: Apply previous rule. Then remaining instance has optimal fractional solution $(1/2, 1/2, \dots, 1/2)$. If |V| > 2k (then optimal solution \geq optimal fractional solution > k) return NO.

The previous example shows in particular that for Vertex Cover we can "trust" the LP relaxation on integral variables. Is this a general rule (for all ILPs)?

Unfortunately not

The previous example shows in particular that for Vertex Cover we can "trust" the LP relaxation on integral variables. Is this a general rule (for all ILPs)?

Unfortunately not

Consider the following Knapsack instance: There are 5 items of profit 20 and weight 2 and one item of profit 1 and weight 1. ILP formulation:

$$\max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6$$

$$2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 \le 5$$

$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$

The previous example shows in particular that for Vertex Cover we can "trust" the LP relaxation on integral variables. Is this a general rule (for all ILPs)?

Unfortunately not

Consider the following Knapsack instance: There are 5 items of profit 20 and weight 2 and one item of profit 1 and weight 1. ILP formulation:

$$\max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6$$
$$2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 \le 5$$
$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$

The optimal fractional solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 1/2$, $x_4 = 0$, $x_5 = 0$, $x_6 = 0$.

The optimal integer solution is $x_1=1$, $x_2=1$, $x_3=0$, $x_4=0$, $x_5=0$, $x_6=1$.

The previous example shows in particular that for Vertex Cover we can "trust" the LP relaxation on integral variables. Is this a general rule (for all ILPs)?

Unfortunately not

Consider the following Knapsack instance: There are 5 items of profit 20 and weight 2 and one item of profit 1 and weight 1. ILP formulation:

$$\max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6$$
$$2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 \le 5$$
$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$

The optimal fractional solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 1/2$, $x_4 = 0$, $x_5 = 0$, $x_6 = 0$.

The optimal integer solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, $x_6 = 1$.

The relaxation is mistaken about x_6 . LP relaxations hopeless in general?

The previous example shows in particular that for Vertex Cover we can "trust" the LP relaxation on integral variables. Is this a general rule (for all ILPs)?

Unfortunately not

Consider the following Knapsack instance: There are 5 items of profit 20 and weight 2 and one item of profit 1 and weight 1. ILP formulation:

$$\max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6$$

$$2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 \le 5$$

$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$

The optimal fractional solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 1/2$, $x_4 = 0$, $x_5 = 0$, $x_6 = 0$.

The optimal integer solution is $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, $x_6 = 1$.

The relaxation is mistaken about x_6 . LP relaxations hopeless in general?

Not entirely. Fractional solution is still "similar" to integer solution. We will quantify this next lecture

This example is also a problem for Branch-and-Bound solvers

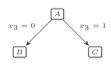
$$\max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6$$

$$2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 \le 5$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \in \{0, 1\}$$

LP solution:

This example is also a problem for Branch-and-Bound solvers

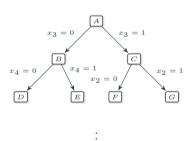


$$\begin{aligned} \max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6 \\ 2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 &\leq 5 \\ x_1, x_2, x_3, x_4, x_5, x_6 &\in \{0, 1\} \end{aligned}$$

LP solution:

x_1	x_2	x_3	x_4	x_5	x_6
1	1	1/2	0	0	0
1	1	0	1/2	0	0
1	1/2	1	0	0	0
	1	1 1 1 1	1 1 1/2 1 1 0	1 1 1/2 0 1 1 0 1/2	- /

This example is also a problem for Branch-and-Bound solvers

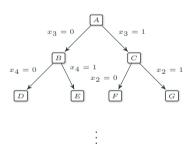


 $\begin{aligned} \max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6 \\ 2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 &\leq 5 \\ x_1, x_2, x_3, x_4, x_5, x_6 &\in \{0, 1\} \end{aligned}$

LP solution:

	x_1	x_2	x_3	x_4	x_5	x_6
A:	1	1	1/2	0	0	0
B:	1	1	0	1/2	0	0
C:	1	1/2	1	0	0	0
D:	1	1	0	0	1/2	0
E:	1	1/2	0	1	0	0
F:	1	0	0	1/2	0	0
G:	1/2	1	1	0	0	0

This example is also a problem for Branch-and-Bound solvers



$$\begin{aligned} \max 20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 + x_6 \\ 2x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 + x_6 &\leq 5 \\ x_1, x_2, x_3, x_4, x_5, x_6 &\in \{0, 1\} \end{aligned}$$

LP solution:

	x_1	x_2	x_3	x_4	x_5	x_6
A:	1	1	1/2	0	0	0
B:	1	1	0	1/2	0	0
C:	1	1/2	1	0	0	0
D:	1	1	0	0	1/2	0
E:	1	1/2	0	1	0	0
F:	1	0	0	1/2	0	0
G:	1/2	1	1	0	0	0

→ Branching has almost no effect

Computational experiment

Using different sizes of this example in (naive) Branch-and-Bound solver

$\max 20x_1 + \dots + 20x_n + x_{n+1}$ $2x_1 + \dots + 2x_n + x_{n+1} \le 2k + 1$ $x_1, \dots, x_{n+1} \in \{0, 1\}$

Running time

	0		
n	k	time (sec.)	nodes
20	5	3.24	54,262
20	6	6.97	116,278
20	7	12.24	203,400
20	8	17.83	293,928
20	9	21.68	352,714
20	10	21.74	352,714
25	5	13.86	23,228
25	6	38.96	657,798
25	7	92.71	1,562,273
30	5	42.7	736,284
30	6	160.15	2,629,573

Note: Modern ILP solvers would avoid this particular example, e.g., by smart preprocessing, but similar scenarios could still occur