
FPT via Linear Programming II

DM898: Parameterized Algorithms
Lars Rohwedder

Today’s lecture

FPT algorithms for classes of integer linear programs

• Parameter: number of variables

• Parameter: number of constraints

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Idea based on branching:

• We want to decide if there is a point that is in the feasible
region of the LP relaxation (a polytope) and is integer

• If the polytope is not “flat” in any direction, it must
contain an integer point ⇝ return YES

• Otherwise, find flat direction and branch on a small
number of orthogonal hyperplanes on which an integer
point can lie ⇝ new problem is in dimension n− 1

Details are intricate and we do not cover them here

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Eisenbrand-Weismantel algorithm

Eisenbrand and Weismantel [2018] showed that integer programs with m linear equality constraints, where all
coefficients lie in {−∆, . . . ,∆}, and (possibly many) variables with upper and lower bounds can be solved in
time (m∆)O(m2) · |I|O(1).

One may ask whether Eisenbrand and Weismantel’s algorithm can be improved to FPT time in m alone (like
Lentra’s algorithm that does not need parameter ∆). This is not possible, because m = 1 is already NP-hard
(e.g. via reduction from Subset-Sum).

We will prove Eisenbrand and Weismantel’s result in the following.

FPT algorithms for classes of ILPs

Can we design FPT algorithms for integer linear programs?

Motivation: since ILPs are very expressive, we would be able to derive many results from such an algorithm

But how to parameterize ILPs?
parameters need to be strong enough to counter high difficulty of ILPs

Lenstra’s algorithm

Lenstra [1983] showed that ILPs with n variables can be solved in time f(n) · |I|O(1).
Subsequent improvements by Kannan [1987] and Reis and Rothvoss [2023] improved the running time to
(logn)O(n) · |I|O(1).

Eisenbrand-Weismantel algorithm

Eisenbrand and Weismantel [2018] showed that integer programs with m linear equality constraints, where all
coefficients lie in {−∆, . . . ,∆}, and (possibly many) variables with upper and lower bounds can be solved in
time (m∆)O(m2) · |I|O(1).

One may ask whether Eisenbrand and Weismantel’s algorithm can be improved to FPT time in m alone (like
Lentra’s algorithm that does not need parameter ∆). This is not possible, because m = 1 is already NP-hard
(e.g. via reduction from Subset-Sum).

We will prove Eisenbrand and Weismantel’s result in the following.

Eisenbrand-Weismantel algorithm

Proximity

Problem statement. Given coefficients of the objective c ∈ Zn, a matrix A ∈ {−∆, . . . ,∆}m×n (encoding the
coefficients of the constraints in the m rows), right-hand side b ∈ Zm and lower and upper bounds
ℓi ∈ Z ∪ {−∞}, ui ∈ Z ∪ {∞}, i ∈ {1, 2, . . . , n}, solve

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ Z for all i = 1, 2, . . . , n

Proximity theorem

Assume that the ILP above is feasible and bounded. Let x∗ be a optimal solution to the LP relaxation of the
ILP above with at most m non-integral variables1. Then there exists some optimal integer solution x with

∥x− x∗∥1 =
n∑

i=1

|xi − x∗i | ≤ (2m2∆+ 1)m +m =: prox

[
in particular: ∥x− ⌊x∗⌋∥1 =

n∑
i=1

|xi − ⌊x∗i ⌋| ≤ (2m2∆+ 1)m + 2m =: prox’
]

We will prove this statement next lecture and first show how it can be used algorithmically.

1 such a solution always exists and can be computed in polynomial time. More details next lecture.

Proximity

Problem statement. Given coefficients of the objective c ∈ Zn, a matrix A ∈ {−∆, . . . ,∆}m×n (encoding the
coefficients of the constraints in the m rows), right-hand side b ∈ Zm and lower and upper bounds
ℓi ∈ Z ∪ {−∞}, ui ∈ Z ∪ {∞}, i ∈ {1, 2, . . . , n}, solve

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ Z for all i = 1, 2, . . . , n

Proximity theorem

Assume that the ILP above is feasible and bounded. Let x∗ be a optimal solution to the LP relaxation of the
ILP above with at most m non-integral variables1. Then there exists some optimal integer solution x with

∥x− x∗∥1 =
n∑

i=1

|xi − x∗i | ≤ (2m2∆+ 1)m +m =: prox

[
in particular: ∥x− ⌊x∗⌋∥1 =

n∑
i=1

|xi − ⌊x∗i ⌋| ≤ (2m2∆+ 1)m + 2m =: prox’
]

We will prove this statement next lecture and first show how it can be used algorithmically.

1 such a solution always exists and can be computed in polynomial time. More details next lecture.

Dynamic program

We proceed similar to the Knapsack dynamic program based on “dominance”

ILP(n,A, b, c, ℓ, u)

• compute optimum x∗ to LP relaxation with ≤ m non-integral variables

• T ← {(0, 0, 0)} // set of undominated (objective, right-hand side, distance-to-⌊x∗⌋) triples obtainable
• for i ∈ {1, 2, . . . , n}

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗

i ⌋ − prox’}, . . . ,min{ui, ⌊x∗
i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗
i ⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

• return min{C | (C,B, k) ∈ T , B = b}

Correctness. By induction we have that for each B ∈ Zm, k ∈ Z≥0, T contains (C,B, k) after iteration i if
and only if k ≤ prox’ and the following minimum exists with

C = min


i∑

j=1

cjxj | xi ∈ {ℓi, ℓi + 1, . . . , ui}∀j ∈ {1, 2 . . . , i},
i∑

j=1

Ajxj = B,

i∑
j=1

|xj − ⌊x∗j ⌋| = k



Dynamic program

We proceed similar to the Knapsack dynamic program based on “dominance”

ILP(n,A, b, c, ℓ, u)

• compute optimum x∗ to LP relaxation with ≤ m non-integral variables

• T ← {(0, 0, 0)} // set of undominated (objective, right-hand side, distance-to-⌊x∗⌋) triples obtainable
• for i ∈ {1, 2, . . . , n}

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗

i ⌋ − prox’}, . . . ,min{ui, ⌊x∗
i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗
i ⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

• return min{C | (C,B, k) ∈ T , B = b}

Correctness. By induction we have that for each B ∈ Zm, k ∈ Z≥0, T contains (C,B, k) after iteration i if
and only if k ≤ prox’ and the following minimum exists with

C = min


i∑

j=1

cjxj | xi ∈ {ℓi, ℓi + 1, . . . , ui}∀j ∈ {1, 2 . . . , i},
i∑

j=1

Ajxj = B,

i∑
j=1

|xj − ⌊x∗j ⌋| = k



Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.
• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.
• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.
• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.

• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.
• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Running time

One iteration of main loop

• T ′ ← T , T ← ∅
• for xi in {max{ℓi, ⌊x∗i ⌋ − prox’}, . . . ,min{ui, ⌊x∗i ⌋+ prox’}}

• T ← T ∪ {(C + cixi, B + Aixi, k + |⌊x∗⌋ − xi|) | (C,B, k) ∈ T ′} // Ai is the ith column of A

• for (C,B, k), (C′, B′, k′) ∈ T with C < C′, B = B′, k = k′

• T ← T \ (C′, B′, k′)

• for (C,B, k) ∈ T with k > prox’
• T ← T \ (C,B, k)

The iteration has running time (prox’ · |T |)O(1) with |T | at the beginning of iteration. How large is T ?

• At most one tripel (C,B, k) for each B, k

• Many B, k have no tripel. If there is a tripel (C,B, k), then k ≤ prox’ and there is a solution x1, . . . , xi

with A1x1 + · · ·Aixi = B and
∑i

j=1 |xj − ⌊x∗j ⌋| = k. Thus,

∥B − (A1⌊x∗1⌋+ · · ·+Ai⌊x∗i ⌋︸ ︷︷ ︸
:=B∗

)∥∞ ≤ k∆ .

But there only exist (2k∆+ 1)m ≤ (2prox’∆+ 1)m integer vectors B with ∥B −B∗∥∞ ≤ k∆.
• Thus, at the beginning of an iteration |T | ≤ (2prox’∆+ 1)m · prox’ ≤ (m∆)O(m2)

Total running time: #iterations · (m∆)O(m2) ≤ n · (m∆)O(m2)

Other FPT results for ILP

Unbounded variables

Consider the Eisenbrand-Weismantel setting, but with all variables being non-negative integers:

min cTx

Ax = b

xi ∈ Z≥0 for all i = 1, 2, . . . , n

The Eisenbrand-Weismantel algorithm from before has a running time of n(m∆)O(m2). In this case, faster
algorithms are known.

Fastest known algorithm runs in time (
√
m∆)2m +O(nm), due to Jansen and Rohwedder [2019].

Block structures

Consider A1, . . . , An, B1, . . . , Bn ∈ {−∆, . . . ,∆}k×k that form one of the following two block structures.

min cTx

A1 A2 · · · An

B1

B2

. . .
Bn

x = b

ℓi ≤ xi ≤ ui for all i = 1, 2, . . . , kn

xi ∈ Z

min cTx
A1 B1

A2 B2

...
. . .

An Bn

x = b

ℓi ≤ xi ≤ ui for all i = 1, 2, . . . , k(n+ 1)

xi ∈ Z

Both classes of ILPs have FPT algorithms in parameters k and ∆. Currently fastest are due to Cslovjecsek,
Eisenbrand, Hunkenschröder, Rohwedder, Weismantel [2021] and Klein [2020].

In practice, these classes are also well solvable via decomposition methods (Dantzig-Wolfe decomposition and
Bender’s decomposition), which we do not detail here.

Summary

A number of FPT results for integer linear programs are known, which:

• Explain to some extend the good empirical behavior and utility of LP relaxations we can see in commercial
ILP solvers

• Have some interesting applications for concrete problems (see e.g. exercises)

• Disclaimer: Many (perhaps most) FPT results in literature are based on entirely different techniques and
cannot be derived from generic ILP results

PARAMLP

• ERC-funded project PARAMLP: Parameterized Algorithms and Polyhedra

• Funded with ≈ 11 000 000 DKK

• Awarded to me in 2025, hiring PhD students and PostDocs soon

• Possibly also thesis projects in this field

Summary

A number of FPT results for integer linear programs are known, which:

• Explain to some extend the good empirical behavior and utility of LP relaxations we can see in commercial
ILP solvers

• Have some interesting applications for concrete problems (see e.g. exercises)

• Disclaimer: Many (perhaps most) FPT results in literature are based on entirely different techniques and
cannot be derived from generic ILP results

PARAMLP

• ERC-funded project PARAMLP: Parameterized Algorithms and Polyhedra

• Funded with ≈ 11 000 000 DKK

• Awarded to me in 2025, hiring PhD students and PostDocs soon

• Possibly also thesis projects in this field

	TolDarkBlue Eisenbrand-Weismantel algorithm
	TolDarkBlue Other FPT results for ILP

