
FPT via Linear Programming III

DM898: Parameterized Algorithms
Lars Rohwedder



Today’s lecture

• Proof of the proximity theorem

• Steinitz Lemma



Recap of proximity

Problem statement. Given coefficients of the objective c ∈ Zn, a matrix A ∈ Zm×n (encoding the coefficients
of the constraints in the m rows), right-hand side b ∈ Zm and lower and upper bounds
ℓi ∈ Z ∪ {−∞}, ui ∈ Z ∪ {∞}, i ∈ {1, 2, . . . , n}, solve

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ Z for all i = 1, 2, . . . , n

Lemma

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and ℓi ∈ R ∪ {−∞},
ui ∈ R ∪ {−∞} and consider the LP

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ R for all i = 1, 2, . . . , n

Assuming it is feasible and bounded, there is an optimal
solution x∗ with |{i ∈ {1, 2, . . . , n} : ℓi < x∗

i < ui}| ≤ m.
Such a solution can be found in polynomial time.

Proximity theorem

Assume that the ILP above is feasible and
bounded. Let x∗ be an optimal solution to
the LP relaxation of the ILP above with at
most m non-integral variables. Then there
exists an optimal integer solution x with

∥x− x∗∥1 ≤ (2m2∆+ 1)m +m .



Few non-tight variables



Lemma

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and ℓi ∈ R ∪ {−∞}, ui ∈ R ∪ {−∞} and consider the LP

min cTx

Ax = b

ℓi ≤ xi ≤ ui, xi ∈ R for all i = 1, 2, . . . , n

Assuming it is feasible and bounded, there is an optimal solution x∗ with
|{i ∈ {1, 2, . . . , n} : ℓi < x∗

i < ui}| ≤ m. Such a solution can be found in polynomial time.

• Let x be any optimal solution to the LP (can be computed in polynomial time)
• Let i1 < i2 < · · · < ih be the indices of variables with ℓij < xij < uij

• If h ≤ m return x

• Otherwise, Ai1 , . . . , Aih (columns of A) are linearly dependent: There are λ1, . . . , λh ∈ R not all zero
with λ1Ai1 + · · ·+ λhAih = 0

• Wlog.
∑h

j=1 cjλj ≤ 0 (otherwise negate λ)

Augment x as follows:
x′
i =

{
xi + δλj if i = ij

xi if i /∈ {i1, . . . , ih}

This maintains the validity of constraints and does not decrease the objective.

If we choose δ > 0 small enough then no variable bounds will be violated. We can set it carefully so that one
additional variable will hit exactly one of its bounds. Repeat the procedure until h ≤ m
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Proof of proximity theorem



Preparations

• Let x∗ be an optimal solution to the LP relaxation with ≤ m non-integer variables

• Let x be an optimal integer solution with ∥x− x∗∥1 minimal among all optimal integer solutions

• x− x∗ is the total change moving from fractional to integer solution

• Let r be the amount we need to move each variable of x∗ to reach the next integer towards x

• Decompose the remaining change (x− (x∗ + r)) into vectors d(1), . . . , d(h) that each increases or
decreases a single variable by 1

x∗ 0.5 3 0 6.7 2 0

x 2 2 0 2 2 2

x− x∗ 1.5 −1 0 −4.7 0 2

r 0.5 0 0 −0.7 0 0

d(1) 1 0 0 0 0 0

d(2) 0 −1 0 0 0 0

d(3) 0 0 0 −1 0 0

d(4) 0 0 0 −1 0 0

d(5) 0 0 0 −1 0 0

d(6) 0 0 0 −1 0 0

d(7) 0 0 0 0 0 1

d(8) 0 0 0 0 0 1

Note that x = x∗ + r + d(1) + · · ·+ d(h)

Applying a subset of changes

Consider z = x∗ +
∑

p∈P p for some
P ⊆ {r, d(1), . . . , d(h)}. Then

• z respects the variable bounds, i.e.,
ℓi ≤ zi ≤ ui

• Az = b if and only if
∑

p∈P Ap = 0

• z may or may not be integral depending on
whether r ∈ P
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Lemma

Let ∅ ̸= P ⊊ {r, d(1), . . . , d(h)}. Then
∑

p∈P Ap ̸= 0.

Proof. Assume towards contradiction that
∑

p∈P Ap = 0.

Without loss of generality, assume r /∈ P . Otherwise, replace P by P ′ = {r, d(1), . . . , d(h)} \ P

Case 1:
∑

p∈P cTp < 0

• Then z = x∗ +
∑

p∈P p is a feasible fractional solution and cTz = cTx∗ +
∑

p∈P cTp < cTx∗. Hence, x∗ is
not optimal. A contradiction

Case 2:
∑

p∈P cTp ≥ 0

• Then x′ = x−
∑

p∈P p is a feasible integer solution and cTx′ = cTx−
∑

p∈P cTp ≤ cTx. Hence, x′ is also
an optimal integer solution. Since we applied some of the changes towards x∗ (P ̸= ∅), it is closer to x∗

than x. A contradiction
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Notice that Ad(1), . . . , Ad(h), Ar are all integer vectors with components bounded by m∆ in absolute value.

Given a set of integer vectors v1, . . . , vh of bounded values and sum zero, how large can h be without
having a non-trivial subset of sum zero?

Steinitz Lemma

Let v1, . . . , vn ∈ Rm with v1 + · · ·+ vn = 0. There
exists a permulation σ ∈ Sn such that for all
i ∈ {1, . . . , n},

∥vσ(1) + vσ(2) + · · ·+ vσ(i)∥ ≤ m · n
max
j=1

∥vj∥ .

Here, ∥ · ∥ is an arbitrary norm.
Source: https://dl.acm.org/doi/abs/10.1145/3340322

Proof of proximity theorem (assuming Steinitz Lemma).

• Let v1 = Ad(1), v2 = Ad(2), . . . , vh = Ad(h), vh+1 = Ar

• Let σ ∈ Sh+1 be the permutation from the Steinitz Lemma (using ∥ · ∥∞)

• There are (2m2∆+ 1)m points in Zm with ∥ · ∥∞ ≤ m2∆

• If h+ 1 > (2m2∆+ 1)m, then there are i < i′ with vσ(1) + · · ·+ vσ(i) = vσ(1) + · · ·+ vσ(i′).
Hence vσ(i+1) + · · ·+ vσ(i′) = 0. By previous lemma, this cannot be

• Thus ∥x− x∗∥1 ≤
∑h

i=1 ∥d(i)∥1 + ∥r∥1 ≤ h+m < (2m2∆+ 1)m +m

https://dl.acm.org/doi/abs/10.1145/3340322
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Notice that Ad(1), . . . , Ad(h), Ar are all integer vectors with components bounded by m∆ in absolute value.

Given a set of integer vectors v1, . . . , vh of bounded values and sum zero, how large can h be without
having a non-trivial subset of sum zero?

Steinitz Lemma

Let v1, . . . , vn ∈ Rm with v1 + · · ·+ vn = 0. There
exists a permulation σ ∈ Sn such that for all
i ∈ {1, . . . , n},

∥vσ(1) + vσ(2) + · · ·+ vσ(i)∥ ≤ m · n
max
j=1

∥vj∥ .

Here, ∥ · ∥ is an arbitrary norm.
Source: https://dl.acm.org/doi/abs/10.1145/3340322
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Proof of the Steinitz Lemma



Background

• The original Steinitz Lemma with a worse bound was proven and published
by Ernst Steinitz in 1913 (not motivated by ILPs)

• The currently best bound was proven by Sergey Sevastyanov in the 1970s

• There are several other major results in mathematics that also have the
name Steinitz Lemma

Ernst Steinitz



Construction of permutation

We iteratively determine σ(n), σ(n− 1), . . . , σ(1) in that order

Determining σ(n): Consider the linear program∑
i∈{1,...,n}

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈{1,...,n}

xi = n− 1−m

xi ∈ [0, 1] for all i ∈ {1, 2, . . . , n}

• It is feasible because x1 = · · · = xn = (n− 1−m)/n is a solution

• By previous Lemma it also has a solution x∗ with ≤ m+ 1 fractional variables

• Therefore at least n− 1−m variables must be 0 or 1

• At least one variable must be 0. Otherwise
∑n

i=1 x
∗
i > n−m− 1

• We set σ(n) = i where i is a variable with x∗
i = 0

• Let Un−1 = {1, 2, . . . , n} \ {σ(n)} be the unassigned vector indices. (x∗
i )i∈Un−1

is a solution to the LP
restricted to Un−1
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Construction of permutation (cont.)

Determining σ(n− 1): Consider the linear program∑
i∈Un−1

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈Un−1

xi = |Un−1| −m

xi ∈ [0, 1] for all i ∈ Un−1

• If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

• By previous Lemma it has a solution x∗ with ≤ m+ 1 fractional variables

• Therefore at least |Un−1| − 1−m variables must be 0 or 1

• At least one variable must be 0. Otherwise
∑

i∈Un−1
x∗
i > |Un−1| − 1−m

• We set σ(n− 1) = i where i is a variable with x∗
i = 0

• Let Un−2 = {1, 2, . . . , n} \ {σ(n), σ(n− 1)} be the unassigned vector indices. (x∗
i )i∈Un−2

is a solution to
the LP restricted to Un−2
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Construction of permutation (cont.)

Determining σ(n− 1): Consider the linear program∑
i∈Un−2

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈Un−2

xi = |Un−2| −m

xi ∈ [0, 1] for all i ∈ Un−2

• If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

• By previous Lemma it has a solution x∗ with ≤ m+ 1 fractional variables

• Therefore at least |Un−1| − 1−m variables must be 0 or 1

• At least one variable must be 0. Otherwise
∑

i∈Un−1
x∗
i > |Un−1| − 1−m

• We set σ(n− 1) = i where i is a variable with x∗
i = 0

• Let Un−2 = {1, 2, . . . , n} \ {σ(n), σ(n− 1)} be the unassigned vector indices. (x∗
i )i∈Un−2

is a solution to
the LP restricted to Un−2



Construction of permutation (cont..)

We make this into a general rule

Determining σ(k), k > m: Consider the linear program and assume that by previous construction it is feasible.∑
i∈Uk

(vi)jxi = 0 for all j ∈ {1, . . . ,m}

∑
i∈Uk

xi = |Uk| −m

xi ∈ [0, 1] for all i ∈ Uk

• If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

• By previous Lemma it has a solution x∗ with ≤ m+ 1 fractional variables

• Therefore at least |Uk| − 1−m variables must be 0 or 1

• At least one variable must be 0. Otherwise
∑

i∈Uk
x∗
i > |Uk| − 1−m

• We set σ(k) = i where i is a variable with x∗
i = 0

• Let Uk−1 = {1, 2, . . . , n} \ {σ(n), σ(n− 1), . . . , σ(k)} be the unassigned vector indices. (x∗
i )i∈Uk−1

is a
solution to the LP restricted to Uk−1

Determining σ(k), k ≤ m: once only |Um| = m vectors are left, assign them to σ(m), . . . , σ(1) arbitrarily

Analysis: blackboard
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