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Today'’s lecture

e Proof of the proximity theorem

e Steinitz Lemma



Recap of proximity

Problem statement. Given coefficients of the objective ¢ € Z", a matrix A € Z™*™ (encoding the coefficients
of the constraints in the m rows), right-hand side b € Z™ and lower and upper bounds
U € ZU{—oo},u; € ZU{oo}, i € {1,2,...,n}, solve

min 'z

Ax =b
Ui <zi <wuy, x; €7 foralli=1,2,...,n

Lemma

Let A€ R™*" b e R™, c € R", and ¢; € RU {—o0},

Proximity theorem
u; € RU{—o0} and consider the LP

Assume that the ILP above is feasible and

min o'z bounded. Let x* be an optimal solution to
Az —=b the LP relaxation of the ILP above with at
most m non-integral variables. Then there

b <z <ugy, x; €ER foralli=1,2,...,n

exists an optimal integer solution x with
Assuming it is feasible and bounded, there is an optimal lz —z*||y < (2m2A )™ 4m.
solution z* with [{i € {1,2,...,n} : 4; <z} <u;}| <m. — ‘
Such a solution can be found in polynomial time.




Few non-tight variables



Lemma
Let A€ R™*"™, beR™, ceR", and ¢; € RU{—00}, u; € RU{—00} and consider the LP
min ¢z
Az =D
b <xz; <wu;, x; €ER foralli=1,2,...,n

Assuming it is feasible and bounded, there is an optimal solution z* with
{ie{1,2,...,n}: {; < zf <wu;}| < m. Such a solution can be found in polynomial time.
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e Let x be any optimal solution to the LP (can be computed in polynomial time)
e Let i1 < ig < --- < iy be the indices of variables with Zij < gy < ugy
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Let A€ R™*"™, beR™, ceR", and ¢; € RU{—00}, u; € RU{—00} and consider the LP
T

min ¢
Az =b
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with )\1Ai1 —+ -+ AhAih =0
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Let A€ R™*"™, beR™, ceR", and ¢; € RU{—00}, u; € RU{—00} and consider the LP

min 'z
Az =b
b <xz; <wu;, x; €ER foralli=1,2,...,n
Assuming it is feasible and bounded, there is an optimal solution z* with
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e Let x be any optimal solution to the LP (can be computed in polynomial time)
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with )\1Ai1 —+ -+ AhAih =0
e Wiog. Z;’L:I ¢jAj < 0 (otherwise negate \)



Lemma

Let A€ R™*"™, beR™, ceR", and ¢; € RU{—00}, u; € RU{—00} and consider the LP

min 'z
Az =b
b <xz; <wu;, x; €ER foralli=1,2,...,n
Assuming it is feasible and bounded, there is an optimal solution z* with
{ie{1,2,...,n}: {; < zf <wu;}| < m. Such a solution can be found in polynomial time.

e Let x be any optimal solution to the LP (can be computed in polynomial time)
e Let i1 < ig < --- < iy be the indices of variables with Zij < gy < ugy

e If h < m return x

Otherwise, A;,,...,A;, (columns of A) are linearly dependent: There are A1,..., A, € R not all zero
with )\1Ai1 —+ -+ AhAih =0
e Wiog. Z?:l ¢jAj < 0 (otherwise negate \)

:E7;+5)\j ifiZij

z; ifi ¢ {i1,...,in}
This maintains the validity of constraints and does not decrease the objective.

[
[

Augment z as follows: {



Lemma

Let A€ R™*"™, beR™, ceR", and ¢; € RU{—00}, u; € RU{—00} and consider the LP

min ¢’z
Az =b
b <xz; <wu;, x; €ER foralli=1,2,...,n
Assuming it is feasible and bounded, there is an optimal solution z* with
{ie{1,2,...,n} : £; <z} <wu;}| < m. Such a solution can be found in polynomial time.

e Let x be any optimal solution to the LP (can be computed in polynomial time)
e Let i1 < ig < --- < iy be the indices of variables with Zij < gy < ugy

e If h < m return x

Otherwise, A;,,...,A;, (columns of A) are linearly dependent: There are A1,..., A, € R not all zero
with >\1A1‘1 —+ -+ AhAih =0
e Wiog. E?:l ¢jAj < 0 (otherwise negate \)

:E7;+5)\j ifiZij

z; ifi ¢ {i1,...,in}
This maintains the validity of constraints and does not decrease the objective.

[
[

Augment z as follows: {

If we choose § > 0 small enough then no variable bounds will be violated. We can set it carefully so that one
additional variable will hit exactly one of its bounds. Repeat the procedure until h < m



Proof of proximity theorem



Preparations

e Let z* be an optimal solution to the LP relaxation with < m non-integer variables

e Let x be an optimal integer solution with ||z — z*||; minimal among all optimal integer solutions
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Preparations

e Let z* be an optimal solution to the LP relaxation with < m non-integer variables

e Let x be an optimal integer solution with ||z — z*||; minimal among all optimal integer solutions
e x — ™ is the total change moving from fractional to integer solution

e Let r be the amount we need to move each variable of z* to reach the next integer towards x

e Decompose the remaining change (z — (z* 4+ r)) into vectors d(1), ..., d(® that each increases or
decreases a single variable by 1
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Preparations

e Let z* be an optimal solution to the LP relaxation with < m non-integer variables

e Let x be an optimal integer solution with ||z — z*||; minimal among all optimal integer solutions

e x — ™ is the total change moving from fractional to integer solution

e Let r be the amount we need to move each variable of z* to reach the next integer towards x

e Decompose the remaining change (z — (z* 4+ r)) into vectors d(1), ..., d(® that each increases or

decreases a single variable by 1

z* 05 3 0 6.7 2 0
x 2 2 0 2 2 2
z—z* 15 -1 0 —47 0 2
r 05 0 0 —07 0 0
d® 1 0 0 0 0 0
d® 0 -1 0 0 0 0
d®) 0 0 0 -1 0 0
d® 0 0 0 -1 0 0
d® 0 0 0 -1 0 0
d(®) 0 0 0 -1 0 0
d(™ 0 0 0 0 0 1
d® 0 0 0 0 0 1

Note that z = z* + r 4+ d(1) 4+ ... 1 g(h)

Applying a subset of changes

Consider z = 2* + 3~  p p for some
P C{r,d®, . .. d"™} Then

e 2 respects the variable bounds, i.e.,
£ <z Sy

e Az ="bif and only if 3

e z may or may not be integral depending on
whether r € P

pePApZO




Lemma

Let  # P C {r,d®,... dM}. Then > pep Ap #0.
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not optimal. A contradiction



Lemma

Let  # P C {r,d®,... dM}. Then > pep Ap # 0.

Proof. Assume towards contradiction that }° ., Ap = 0.
Without loss of generality, assume 7 ¢ P. Otherwise, replace P by P’ = {r,d1) ... d(M}\ P
Case 1: 3} p c'p<0
e Then z=a"+3 ppis a feasible fractional solution and z=cla* + 2 opep c'p < cTx*. Hence, z* is
not optimal. A contradiction
Case 2: 3 pc'p>0
e Thenz' =z — 37 ppis a feasible integer solution and e =cToe — 2pep c'p < cTx. Hence, o/ is also

an optimal integer solution. Since we applied some of the changes towards z* (P # (), it is closer to =*
than x. A contradiction



Notice that Ad(1), ... Ad™ Ar are all integer vectors with components bounded by mA in absolute value.

Given a set of integer vectors v1,...,vy of bounded values and sum zero, how large can h be without
having a non-trivial subset of sum zero?


https://dl.acm.org/doi/abs/10.1145/3340322

Notice that Ad(1), ... Ad™ Ar are all integer vectors with components bounded by mA in absolute value.

Given a set of integer vectors v1,...,vy of bounded values and sum zero, how large can h be without

having a non-trivial subset of sum zero?

Steinitz Lemma

Let v1,...,vn € R™ with v1 +---+ vy, = 0. There
exists a permulation o € S,, such that for all
i€ {l,...,n},

vy +vo(2) + - + Vo)l < m- T}IEiCHUjH .

Here, || - || is an arbitrary norm.

AN

0

Il =1

: https://dl.acm.org/doi/abs/10.1145/3340322

Il <2
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Proof of proximity theorem (assuming Steinitz Lemma).

o Let vy = AdW vy = AdP), ... v = AdM), vp1 = Ar

e Let 0 € Sj41 be the permutation from the Steinitz Lemma (using || - ||o0)
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Proof of proximity theorem (assuming Steinitz Lemma).

o Let vy = AdW vy = AdP), ... v = AdM), vp1 = Ar

Let o € Sj,41 be the permutation from the Steinitz Lemma (using || - ||oo)

o There are (2m2A + 1)™ points in Z™ with || - [|cc < m2?A

Ifh+1> (2m2A + 1)™, then there are i < i’ with Vo(1) + 0+ V(i) = Vo(1) + 0+ Vo(ir)-
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Thus [lz — 2|1 < 320, [dD 1+ [Irlly < h+m < 2m2A+1)™ +m
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Proof of the Steinitz Lemma




Background

e The original Steinitz Lemma with a worse bound was proven and published
by Ernst Steinitz in 1913 (not motivated by ILPs)

e The currently best bound was proven by Sergey Sevastyanov in the 1970s

e There are several other major results in mathematics that also have the
name Steinitz Lemma

Ernst Steinitz



Construction of permutation

We iteratively determine o(n),o(n —1),...,0(1) in that order

Determining o(n): Consider the linear program

Z (vi)jzi =0 forall j € {1,...,m}
i€{1,...,n}
Z z;=n—1—m
i€{1,...,n}
x; € [0,1] foralli e {1,2,...,n}

e It is feasible because 1 = --- =z, = (n — 1 — m)/n is a solution
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Construction of permutation

We iteratively determine o(n),o(n —1),...,0(1) in that order

Determining o(n): Consider the linear program

Z (vi)jz; =0 forall j € {1,...,m}
i€Up_1
Z zi = |Un—1| —m
i€Up_1
z; € [0,1] foralli € Up_1
e It is feasible because ©1 = --- =z, = (n — 1 — m)/n is a solution

e By previous Lemma it also has a solution x* with < m + 1 fractional variables
e Therefore at least n — 1 — m variables must be 0 or 1

o At least one variable must be 0. Otherwise > 7 o >n —m —1

e We set o(n) =i where i is a variable with 27 =0

o Let Uy—1 ={1,2,...,n}\ {o(n)} be the unassigned vector indices. (z);crv, _, is a solution to the LP
restricted to U,,_1



Construction of permutation (cont.)

Determining o(n — 1): Consider the linear program

> (wi)zi=0

i€U,_1

Z i = |Up—1| —m

1€U, -1

x; € [0, 1}

forall j € {1,...,m}

foralli e U,_1



Construction of permutation (cont.)

Determining o(n — 1): Consider the linear program

Z (vi)jz; =0 for all j € {1,...,m}
1€Up—1
Z T, = ‘Un71|—1 —m
i€Up 1
z; € [0,1] foralli € U,_1

e If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible
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Determining o(n — 1): Consider the linear program

Z (vi)jz; =0 for all j € {1,...,m}
1€Up—1
Z T, = ‘Un71|—1 —m
i€Up 1
z; € [0,1] foralli € U,_1

If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains

feasible
e By previous Lemma it has a solution z* with < m + 1 fractional variables

e Therefore at least |Uy,,—1| — 1 — m variables must be 0 or 1

At least one variable must be 0. Otherwise =, ., @} > [Un—1| —1—m

We set o(n — 1) =i where i is a variable with 27 =0



Construction of permutation (cont.)

Determining o(n — 1): Consider the linear program

Z (vi)jz; =0 forall j € {1,...,m}
1€Up_2o
Z z; = |Un_2|—m
i€Up_2
z; € [0,1] foralli e Uy _»o

e |If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

e By previous Lemma it has a solution z* with < m + 1 fractional variables

e Therefore at least |Uy,,—1| — 1 — m variables must be 0 or 1

e At least one variable must be 0. Otherwise 3°,cr; @7 > [Un—1| —1-m
e We set o(n — 1) =i where i is a variable with = =0

o Let Up—2=1{1,2,...,n}\ {o(n),o0(n — 1)} be the unassigned vector indices. (z});cu, ., is a solution to
the LP restricted to U,,—o



Construction of permutation (cont..)

We make this into a general rule

Determining o(k), k > m: Consider the linear program and assume that by previous construction it is feasible.

Z(vi)jxizo forall j € {1,...,m}
ieUy

Z z; = |Ug| —m

i€Uy

z; €[0,1] for all ¢ € Uy,



Construction of permutation (cont..)

We make this into a general rule

Determining o(k), k > m: Consider the linear program and assume that by previous construction it is feasible.

Z(vi)j:vizo forall j € {1,...,m}
=
Z z; = |Ug|-1—m
i€Uy
z; € [0,1] for all i € Uy,

e If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible



Construction of permutation (cont..)

We make this into a general rule

Determining o(k), k > m: Consider the linear program and assume that by previous construction it is feasible.

Z(vi)j:vizo forall j € {1,...,m}
=
Z z; = |Ug|-1—m
i€Uy
z; € [0,1] for all i € Uy,

If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains

feasible
e By previous Lemma it has a solution z* with < m + 1 fractional variables
e Therefore at least |Uy| — 1 — m variables must be 0 or 1

e At least one variable must be 0. Otherwise 3,y @7 > [Ug| =1 —m

We set (k) = i where i is a variable with 27 =0



Construction of permutation (cont..)

We make this into a general rule

Determining o(k), k > m: Consider the linear program and assume that by previous construction it is feasible.

Z (vi)jxs =0 forall j € {1,...,m}
i€eUp_1
Z z; = |Uk_1]—m
€Uk _q
z; € [0,1] foralli € Ux_1

e If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

e By previous Lemma it has a solution z* with < m + 1 fractional variables

e Therefore at least |Uy| — 1 — m variables must be 0 or 1

e At least one variable must be 0. Otherwise 3,y @7 > [Ug| =1 —m

e We set o(k) = i where i is a variable with z} =0

o let Up_1 ={1,2,...,n}\ {o(n),0(n —1),...,0(k)} be the unassigned vector indices. (z});cr, , isa
solution to the LP restricted to Uy _1



Construction of permutation (cont..)

We make this into a general rule

Determining o(k), k > m: Consider the linear program and assume that by previous construction it is feasible.

Z(vi)jxizo forall j € {1,...,m}
ieUy
Z z; = |Ug| —m
i€Uy
z; €[0,1] for all i € Uy,

e If we decrease the right-hand side of the second constraint, then by scaling down solution, it remains
feasible

e By previous Lemma it has a solution z* with < m + 1 fractional variables

e Therefore at least |Uy| — 1 — m variables must be 0 or 1

e At least one variable must be 0. Otherwise 3,y @7 > [Ug| =1 —m

e We set o(k) = i where i is a variable with z} =0

o Let Up_1 ={1,2,...,n}\ {o(n),o(n —1),...,0(k)} be the unassigned vector indices. (z});cy, , isa
solution to the LP restricted to U _1

Determining o(k), k < m: once only |Uy,| = m vectors are left, assign them to o(m),...,o(1) arbitrarily

Analysis: blackboard
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